Abstract:Forecasting technological advancement in complex domains such as space exploration presents significant challenges due to the intricate interaction of technical, economic, and policy-related factors. The field of technology forecasting has long relied on quantitative trend extrapolation techniques, such as growth curves (e.g., Moore's law) and time series models, to project technological progress. To assess the current state of these methods, we conducted an updated systematic literature review (SLR) that incorporates recent advances. This review highlights a growing trend toward machine learning-based hybrid models. Motivated by this review, we developed a forecasting model that combines long short-term memory (LSTM) neural networks with an augmentation of Moore's law to predict spacecraft lifetimes. Operational lifetime is an important engineering characteristic of spacecraft and a potential proxy for technological progress in space exploration. Lifetimes were modeled as depending on launch date and additional predictors. Our modeling analysis introduces a novel advance in the recently introduced Start Time End Time Integration (STETI) approach. STETI addresses a critical right censoring problem known to bias lifetime analyses: the more recent the launch dates, the shorter the lifetimes of the spacecraft that have failed and can thus contribute lifetime data. Longer-lived spacecraft are still operating and therefore do not contribute data. This systematically distorts putative lifetime versus launch date curves by biasing lifetime estimates for recent launch dates downward. STETI mitigates this distortion by interconverting between expressing lifetimes as functions of launch time and modeling them as functions of failure time. The results provide insights relevant to space mission planning and policy decision-making.
Abstract:Quantitative technology forecasting uses quantitative methods to understand and project technological changes. It is a broad field encompassing many different techniques and has been applied to a vast range of technologies. A widely used approach in this field is trend extrapolation. Based on the publications available to us, there has been little or no attempt made to systematically review the empirical evidence on quantitative trend extrapolation techniques. This study attempts to close this gap by conducting a systematic review of technology forecasting literature addressing the application of quantitative trend extrapolation techniques. We identified 25 studies relevant to the objective of this research and classified the techniques used in the studies into different categories, among which growth curves and time series methods were shown to remain popular over the past decade, while newer methods, such as machine learning-based hybrid models, have emerged in recent years. As more effort and evidence are needed to determine if hybrid models are superior to traditional methods, we expect to see a growing trend in the development and application of hybrid models to technology forecasting.