Abstract:Exploring causal relationships for qualitative data analysis in HCI and social science research enables the understanding of user needs and theory building. However, current computational tools primarily characterize and categorize qualitative data; the few systems that analyze causal relationships either inadequately consider context, lack credibility, or produce overly complex outputs. We first conducted a formative study with 15 participants interested in using computational tools for exploring causal relationships in qualitative data to understand their needs and derive design guidelines. Based on these findings, we designed and implemented QualCausal, a system that extracts and illustrates causal relationships through interactive causal network construction and multi-view visualization. A feedback study (n = 15) revealed that participants valued our system for reducing the analytical burden and providing cognitive scaffolding, yet navigated how such systems fit within their established research paradigms, practices, and habits. We discuss broader implications for designing computational tools that support qualitative data analysis.
Abstract:Mental-illness stigma is a persistent social problem, hampering both treatment-seeking and recovery. Accordingly, there is a pressing need to understand it more clearly, but analyzing the relevant data is highly labor-intensive. Therefore, we designed a chatbot to engage participants in conversations; coded those conversations qualitatively with AI assistance; and, based on those coding results, built causal knowledge graphs to decode stigma. The results we obtained from 1,002 participants demonstrate that conversation with our chatbot can elicit rich information about people's attitudes toward depression, while our AI-assisted coding was strongly consistent with human-expert coding. Our novel approach combining large language models (LLMs) and causal knowledge graphs uncovered patterns in individual responses and illustrated the interrelationships of psychological constructs in the dataset as a whole. The paper also discusses these findings' implications for HCI researchers in developing digital interventions, decomposing human psychological constructs, and fostering inclusive attitudes.