Abstract:Object recognition has become prevalent across various industries. However, most existing applications are limited to identifying objects alone, without considering their associated states. The ability to recognize both the state and object simultaneously remains less common. One approach to address this is by treating state and object as a single category during training. However, this approach poses challenges in data collection and training since it requires comprehensive data for all possible combinations. Compositional Zero-shot Learning (CZSL) emerges as a viable solution by treating the state and object as distinct categories during training. CZSL facilitates the identification of novel compositions even in the absence of data for every conceivable combination. The current state-of-the-art method, KG-SP, addresses this issue by training distinct classifiers for states and objects, while leveraging a semantic model to evaluate the plausibility of composed compositions. However, KG-SP's accuracy in state and object recognition can be further improved, and it fails to consider the weighting of states and objects during composition. In this study, we propose SASOW, an enhancement of KG-SP that considers the weighting of states and objects while improving composition recognition accuracy. First, we introduce self-attention mechanisms into the classifiers for states and objects, leading to enhanced accuracy in recognizing both. Additionally, we incorporate the weighting of states and objects during composition to generate more reasonable and accurate compositions. Our validation process involves testing SASOW on three established benchmark datasets. Experimental outcomes affirm when compared against OW-CZSL approach, KG-SP, SASOW showcases improvements of 2.1%, 1.7%, and 0.4% in terms of accuracy for unseen compositions across the MIT-States, UT Zappos, and C-GQA datasets, respectively.
Abstract:Transformer-based multi-modal intelligent systems often suffer from high computational and energy costs due to dense self-attention, limiting their scalability under resource constraints. This paper presents SMMT, a sparse multi-modal transformer architecture designed to improve efficiency and robustness. Building upon a cascaded multi-modal transformer framework, SMMT introduces cluster-based sparse attention to achieve near linear computational complexity and modality-wise masking to enhance robustness against incomplete inputs. The architecture is evaluated using Alzheimer's Disease classification on the ADNI dataset as a representative multi-modal case study. Experimental results show that SMMT maintains competitive predictive performance while significantly reducing training time, memory usage, and energy consumption compared to dense attention baselines, demonstrating its suitability as a resource-aware architectural component for scalable intelligent systems.



Abstract:Video action segmentation and recognition tasks have been widely applied in many fields. Most previous studies employ large-scale, high computational visual models to understand videos comprehensively. However, few studies directly employ the graph model to reason about the video. The graph model provides the benefits of fewer parameters, low computational cost, a large receptive field, and flexible neighborhood message aggregation. In this paper, we present a graph-based method named Semantic2Graph, to turn the video action segmentation and recognition problem into node classification of graphs. To preserve fine-grained relations in videos, we construct the graph structure of videos at the frame-level and design three types of edges: temporal, semantic, and self-loop. We combine visual, structural, and semantic features as node attributes. Semantic edges are used to model long-term spatio-temporal relations, while the semantic features are the embedding of the label-text based on the textual prompt. A Graph Neural Networks (GNNs) model is used to learn multi-modal feature fusion. Experimental results show that Semantic2Graph achieves improvement on GTEA and 50Salads, compared to the state-of-the-art results. Multiple ablation experiments further confirm the effectiveness of semantic features in improving model performance, and semantic edges enable Semantic2Graph to capture long-term dependencies at a low cost.