Abstract:This research paper addresses the challenge of modality mismatch in multimodal learning, where the modalities available during inference differ from those available at training. We propose the Text-centric Alignment for Multi-Modality Learning (TAMML) approach, an innovative method that utilizes Large Language Models (LLMs) with in-context learning and foundation models to enhance the generalizability of multimodal systems under these conditions. By leveraging the unique properties of text as a unified semantic space, TAMML demonstrates significant improvements in handling unseen, diverse, and unpredictable modality combinations. TAMML not only adapts to varying modalities but also maintains robust performance, showcasing the potential of foundation models in overcoming the limitations of traditional fixed-modality frameworks in embedding representations. This study contributes to the field by offering a flexible, effective solution for real-world applications where modality availability is dynamic and uncertain.
Abstract:In this work, we conduct an assessment of the optimization capabilities of LLMs across various tasks and data sizes. Each of these tasks corresponds to unique optimization domains, and LLMs are required to execute these tasks with interactive prompting. That is, in each optimization step, the LLM generates new solutions from the past generated solutions with their values, and then the new solutions are evaluated and considered in the next optimization step. Additionally, we introduce three distinct metrics for a comprehensive assessment of task performance from various perspectives. These metrics offer the advantage of being applicable for evaluating LLM performance across a broad spectrum of optimization tasks and are less sensitive to variations in test samples. By applying these metrics, we observe that LLMs exhibit strong optimization capabilities when dealing with small-sized samples. However, their performance is significantly influenced by factors like data size and values, underscoring the importance of further research in the domain of optimization tasks for LLMs.