Abstract:Urban monitoring of public infrastructure (such as waste bins, road signs, vegetation, sidewalks, and construction sites) poses significant challenges due to the diversity of objects, environments, and contextual conditions involved. Current state-of-the-art approaches typically rely on a combination of IoT sensors and manual inspections, which are costly, difficult to scale, and often misaligned with citizens' perception formed through direct visual observation. This raises a critical question: Can machines now "see" like citizens and infer informed opinions about the condition of urban infrastructure? Vision-Language Models (VLMs), which integrate visual understanding with natural language reasoning, have recently demonstrated impressive capabilities in processing complex visual information, turning them into a promising technology to address this challenge. This systematic review investigates the role of VLMs in urban monitoring, with particular emphasis on zero-shot applications. Following the PRISMA methodology, we analyzed 32 peer-reviewed studies published between 2021 and 2025 to address four core research questions: (1) What urban monitoring tasks have been effectively addressed using VLMs? (2) Which VLM architectures and frameworks are most commonly used and demonstrate superior performance? (3) What datasets and resources support this emerging field? (4) How are VLM-based applications evaluated, and what performance levels have been reported?
Abstract:We developed a task-oriented dialogue framework structured as a Directed Acyclic Graph (DAG) of medical questions. The system integrates: (1) a systematic pipeline for transforming medical algorithms and guidelines into a clinical question corpus; (2) a cold-start mechanism based on hierarchical clustering to generate efficient initial questioning without prior patient information; (3) an expand-and-prune mechanism enabling adaptive branching and backtracking based on patient responses; (4) a termination logic to ensure interviews end once sufficient information is gathered; and (5) automated synthesis of doctor-friendly structured reports aligned with clinical workflows. Human-computer interaction principles guided the design of both the patient and physician applications. Preliminary evaluation involved five physicians using standardized instruments: NASA-TLX (cognitive workload), the System Usability Scale (SUS), and the Questionnaire for User Interface Satisfaction (QUIS). The patient application achieved low workload scores (NASA-TLX = 15.6), high usability (SUS = 86), and strong satisfaction (QUIS = 8.1/9), with particularly high ratings for ease of learning and interface design. The physician application yielded moderate workload (NASA-TLX = 26) and excellent usability (SUS = 88.5), with satisfaction scores of 8.3/9. Both applications demonstrated effective integration into clinical workflows, reducing cognitive demand and supporting efficient report generation. Limitations included occasional system latency and a small, non-diverse evaluation sample.