Abstract:The increasing reliance on generative AI models has accelerated the generation rate of synthetic data, with some projections suggesting that most available new data for training could be machine-generated by 2030. This shift to a mainly synthetic content presents a critical challenge: repeated training in synthetic data leads to a phenomenon known as model collapse, where model performance degrades over generations of training, eventually rendering the models ineffective. Although prior studies have explored the causes and detection of model collapse, existing mitigation strategies remain limited. In this paper, we identify model overconfidence in their self-generated data as a key driver of collapse. Building on this observation, we propose a confidence-aware loss function that downweights high-confidence predictions during training. We introduce a novel loss function we call Truncated Cross Entropy (TCE). We demonstrate that TCE significantly delays model collapse in recursive training. We provide a model-agnostic framework that links the loss function design to model collapse mitigation and validate our approach both theoretically and empirically, showing that it can extend the model's fidelity interval before collapse by more than 2.3x. Finally, we show that our method generalizes across modalities. These findings suggest that the design of loss functions provides a simple yet powerful tool for preserving the quality of generative models in the era of increasing synthetic data.
Abstract:This paper investigates the high-level decision-making problem in highway scenarios regarding lane changing and over-taking other slower vehicles. In particular, this paper aims to improve the Travel Assist feature for automatic overtaking and lane changes on highways. About 9 million samples including lane images and other dynamic objects are collected in simulation. This data; Overtaking on Simulated HighwAys (OSHA) dataset is released to tackle this challenge. To solve this problem, an architecture called SwapTransformer is designed and implemented as an imitation learning approach on the OSHA dataset. Moreover, auxiliary tasks such as future points and car distance network predictions are proposed to aid the model in better understanding the surrounding environment. The performance of the proposed solution is compared with a multi-layer perceptron (MLP) and multi-head self-attention networks as baselines in a simulation environment. We also demonstrate the performance of the model with and without auxiliary tasks. All models are evaluated based on different metrics such as time to finish each lap, number of overtakes, and speed difference with speed limit. The evaluation shows that the SwapTransformer model outperforms other models in different traffic densities in the inference phase.