Abstract:We present a dependently-typed cross-linguistic framework for analyzing the telicity and culminativity of events, accompanied by examples of using our framework to model English sentences. Our framework consists of two parts. In the nominal domain, we model the boundedness of noun phrases and its relationship to subtyping, delimited quantities, and adjectival modification. In the verbal domain we define a dependent event calculus, modeling telic events as those whose undergoer is bounded, culminating events as telic events that achieve their inherent endpoint, and consider adverbial modification. In both domains we pay particular attention to associated entailments. Our framework is defined as an extension of intensional Martin-L\"of dependent type theory, and the rules and examples in this paper have been formalized in the Agda proof assistant.
Abstract:We extract mathematical concepts from mathematical text using generative large language models (LLMs) like ChatGPT, contributing to the field of automatic term extraction (ATE) and mathematical text processing, and also to the study of LLMs themselves. Our work builds on that of others in that we aim for automatic extraction of terms (keywords) in one mathematical field, category theory, using as a corpus the 755 abstracts from a snapshot of the online journal "Theory and Applications of Categories", circa 2020. Where our study diverges from previous work is in (1) providing a more thorough analysis of what makes mathematical term extraction a difficult problem to begin with; (2) paying close attention to inter-annotator disagreements; (3) providing a set of guidelines which both human and machine annotators could use to standardize the extraction process; (4) introducing a new annotation tool to help humans with ATE, applicable to any mathematical field and even beyond mathematics; (5) using prompts to ChatGPT as part of the extraction process, and proposing best practices for such prompts; and (6) raising the question of whether ChatGPT could be used as an annotator on the same level as human experts. Our overall findings are that the matter of mathematical ATE is an interesting field which can benefit from participation by LLMs, but LLMs themselves cannot at this time surpass human performance on it.