Abstract:Deepfakes pose a significant threat to digital media security, with current detection methods struggling to generalize across different manipulation techniques and datasets. While recent approaches combine CNN-based architectures with Vision Transformers or leverage multi-modal learning, they remain limited by the inherent constraints of RGB data. We introduce HyperFake, a novel deepfake detection pipeline that reconstructs 31-channel hyperspectral data from standard RGB videos, revealing hidden manipulation traces invisible to conventional methods. Using an improved MST++ architecture, HyperFake enhances hyperspectral reconstruction, while a spectral attention mechanism selects the most critical spectral features for deepfake detection. The refined spectral data is then processed by an EfficientNet-based classifier optimized for spectral analysis, enabling more accurate and generalizable detection across different deepfake styles and datasets, all without the need for expensive hyperspectral cameras. To the best of our knowledge, this is the first approach to leverage hyperspectral imaging reconstruction for deepfake detection, opening new possibilities for detecting increasingly sophisticated manipulations.
Abstract:Gastrointestinal (GI) bleeding, a critical indicator of digestive system disorders, re quires efficient and accurate detection methods. This paper presents our solution to the Auto-WCEBleedGen Version V1 Challenge, where we achieved the consolation position. We developed a unified YOLOv8-X model for both detection and classification of bleeding regions in Wireless Capsule Endoscopy (WCE) images. Our approach achieved 96.10% classification accuracy and 76.8% mean Average Precision (mAP) at 0.5 IoU on the val idation dataset. Through careful dataset curation and annotation, we assembled and trained on 6,345 diverse images to ensure robust model performance. Our implementa tion code and trained models are publicly available at https://github.com/pavan98765/Auto-WCEBleedGen.