Abstract:The expected signature kernel arises in statistical learning tasks as a similarity measure of probability measures on path space. Computing this kernel for known classes of stochastic processes is an important problem that, in particular, can help reduce computational costs. Building on the representation of the expected signature of (inhomogeneous) L\'evy processes with absolutely continuous characteristics as the development of an absolutely continuous path in the extended tensor algebra [F.-H.-Tapia, Forum of Mathematics: Sigma (2022), "Unified signature cumulants and generalized Magnus expansions"], we extend the arguments developed for smooth rough paths in [Lemercier-Lyons-Salvi, "Log-PDE Methods for Rough Signature Kernels"] to derive a PDE system for the expected signature of inhomogeneous L\'evy processes. As a specific example, we see that the expected signature kernel of Gaussian martingales satisfies a Goursat PDE.
Abstract:The concept of signatures and expected signatures is vital in data science, especially for sequential data analysis. The signature transform, a Cartan type development, translates paths into high-dimensional feature vectors, capturing their intrinsic characteristics. Under natural conditions, the expectation of the signature determines the law of the signature, providing a statistical summary of the data distribution. This property facilitates robust modeling and inference in machine learning and stochastic processes. Building on previous work by the present authors [Unified signature cumulants and generalized Magnus expansions, FoM Sigma '22] we here revisit the actual computation of expected signatures, in a general semimartingale setting. Several new formulae are given. A log-transform of (expected) signatures leads to log-signatures (signature cumulants), offering a significant reduction in complexity.