Abstract:Futrell and Mahowald present a useful framework bridging technology-oriented deep learning systems and explanation-oriented linguistic theories. Unfortunately, the target article's focus on generative text-based LLMs fundamentally limits fruitful interactions with linguistics, as many interesting questions on human language fall outside what is captured by written text. We argue that audio-based deep learning models can and should play a crucial role.


Abstract:We test and study the variation in speech recognition of fine-tuned versions of the Whisper model on child, elderly and non-native Dutch speech from the JASMIN-CGN corpus. Our primary goal is to evaluate how speakers' age and linguistic background influence Whisper's performance. Whisper achieves varying Word Error Rates (WER) when fine-tuned on subpopulations of specific ages and linguistic backgrounds. Fine-tuned performance is remarkably better than zero-shot performance, achieving a relative reduction in WER of 81% for native children, 72% for non-native children, 67% for non-native adults, and 65% for native elderly people. Our findings underscore the importance of training speech recognition models like Whisper on underrepresented subpopulations such as children, the elderly, and non-native speakers.