Abstract:Spatio-temporal data, which consists of responses or measurements gathered at different times and positions, is ubiquitous across diverse applications of civil infrastructure. While SciML methods have made significant progress in tackling the issue of response prediction for individual time histories, creating a full spatial-temporal surrogate remains a challenge. This study proposes a novel variant of deep operator networks (DeepONets), namely the full-field Extended DeepONet (FExD), to serve as a spatial-temporal surrogate that provides multi-output response predictions for dynamical systems. The proposed FExD surrogate model effectively learns the full solution operator across multiple degrees of freedom by enhancing the expressiveness of the branch network and expanding the predictive capabilities of the trunk network. The proposed FExD surrogate is deployed to simultaneously capture the dynamics at several sensing locations along a testbed model of a cable-stayed bridge subjected to stochastic ground motions. The ensuing response predictions from the FExD are comprehensively compared against both a vanilla DeepONet and a modified spatio-temporal Extended DeepONet. The results demonstrate the proposed FExD can achieve both superior accuracy and computational efficiency, representing a significant advancement in operator learning for structural dynamics applications.
Abstract:Nonlinear systems, such as with degrading hysteretic behavior, are often encountered in engineering applications. In addition, due to the ubiquitous presence of uncertainty and the modeling of such systems becomes increasingly difficult. On the other hand, datasets from pristine models developed without knowing the nature of the degrading effects can be easily obtained. In this paper, we use datasets from pristine models without considering the degrading effects of hysteretic systems as low-fidelity representations that capture many of the important characteristics of the true system's behavior to train a deep operator network (DeepONet). Three numerical examples are used to show that the proposed use of the DeepONets to model the discrepancies between the low-fidelity model and the true system's response leads to significant improvements in the prediction error in the presence of uncertainty in the model parameters for degrading hysteretic systems.