Abstract:As the popularity and reach of social networks continue to surge, a vast reservoir of opinions and sentiments across various subjects inundates these platforms. Among these, X social network (formerly Twitter) stands as a juggernaut, boasting approximately 420 million active users. Extracting users' emotional and mental states from their expressed opinions on social media has become a common pursuit. While past methodologies predominantly focused on the textual content of messages to analyze user sentiment, the interactive nature of these platforms suggests a deeper complexity. This study employs hybrid methodologies, integrating textual analysis, profile examination, follower analysis, and emotion dissemination patterns. Initially, user interactions are leveraged to refine emotion classification within messages, encompassing exchanges where users respond to each other. Introducing the concept of a communication tree, a model is extracted to map these interactions. Subsequently, users' bios and interests from this tree are juxtaposed with message text to enrich analysis. Finally, influential figures are identified among users' followers in the communication tree, categorized into different topics to gauge interests. The study highlights that traditional sentiment analysis methodologies, focusing solely on textual content, are inadequate in discerning sentiment towards significant events, notably the presidential election. Comparative analysis with conventional methods reveals a substantial improvement in accuracy with the incorporation of emotion distribution patterns and user profiles. The proposed approach yields a 12% increase in accuracy with emotion distribution patterns and a 15% increase when considering user profiles, underscoring its efficacy in capturing nuanced sentiment dynamics.
Abstract:Smart cities need the involvement of their residents to enhance quality of life. Conversational query-answering is an emerging approach for user engagement. There is an increasing demand of an advanced conversational question-answering that goes beyond classic systems. Existing approaches have shown that LLMs offer promising capabilities for CQA, but may struggle to capture the nuances of conversational contexts. The new approach involves understanding the content and engaging in a multi-step conversation with the user to fulfill their needs. This paper presents a novel method to elevate the performance of Persian Conversational question-answering (CQA) systems. It combines the strengths of Large Language Models (LLMs) with contextual keyword extraction. Our method extracts keywords specific to the conversational flow, providing the LLM with additional context to understand the user's intent and generate more relevant and coherent responses. We evaluated the effectiveness of this combined approach through various metrics, demonstrating significant improvements in CQA performance compared to an LLM-only baseline. The proposed method effectively handles implicit questions, delivers contextually relevant answers, and tackles complex questions that rely heavily on conversational context. The findings indicate that our method outperformed the evaluation benchmarks up to 8% higher than existing methods and the LLM-only baseline.