Abstract:Organizations handling sensitive documents face a tension: cloud-based AI risks GDPR violations, while local systems typically require 18-32 GB RAM. This paper presents CUBO, a systems-oriented RAG platform for consumer laptops with 16 GB shared memory. CUBO's novelty lies in engineering integration of streaming ingestion (O(1) buffer overhead), tiered hybrid retrieval, and hardware-aware orchestration that enables competitive Recall@10 (0.48-0.97 across BEIR domains) within a hard 15.5 GB RAM ceiling. The 37,000-line codebase achieves retrieval latencies of 185 ms (p50) on C1,300 laptops while maintaining data minimization through local-only processing aligned with GDPR Art. 5(1)(c). Evaluation on BEIR benchmarks validates practical deployability for small-to-medium professional archives. The codebase is publicly available at https://github.com/PaoloAstrino/CUBO.
Abstract:Organizations handling sensitive documents face a critical dilemma: adopt cloud-based AI systems that offer powerful question-answering capabilities but compromise data privacy, or maintain local processing that ensures security but delivers poor accuracy. We present a question-answering system that resolves this trade-off by combining semantic understanding with keyword precision, operating entirely on local infrastructure without internet access. Our approach demonstrates that organizations can achieve competitive accuracy on complex queries across legal, scientific, and conversational documents while keeping all data on their machines. By balancing two complementary retrieval strategies and using consumer-grade hardware acceleration, the system delivers reliable answers with minimal errors, letting banks, hospitals, and law firms adopt conversational document AI without transmitting proprietary information to external providers. This work establishes that privacy and performance need not be mutually exclusive in enterprise AI deployment.