Abstract:Causal machine learning has the potential to revolutionize decision-making by combining the predictive power of machine learning algorithms with the theory of causal inference. However, these methods remain underutilized by the broader machine learning community, in part because current empirical evaluations do not permit assessment of their reliability and robustness, undermining their practical utility. Specifically, one of the principal criticisms made by the community is the extensive use of synthetic experiments. We argue, on the contrary, that synthetic experiments are essential and necessary to precisely assess and understand the capabilities of causal machine learning methods. To substantiate our position, we critically review the current evaluation practices, spotlight their shortcomings, and propose a set of principles for conducting rigorous empirical analyses with synthetic data. Adopting the proposed principles will enable comprehensive evaluations that build trust in causal machine learning methods, driving their broader adoption and impactful real-world use.
Abstract:Robust policies enable reinforcement learning agents to effectively adapt to and operate in unpredictable, dynamic, and ever-changing real-world environments. Factored representations, which break down complex state and action spaces into distinct components, can improve generalization and sample efficiency in policy learning. In this paper, we explore how the curriculum of an agent using a factored state representation affects the robustness of the learned policy. We experimentally demonstrate three simple curricula, such as varying only the variable of highest regret between episodes, that can significantly enhance policy robustness, offering practical insights for reinforcement learning in complex environments.
Abstract:Robust policies enable reinforcement learning agents to effectively adapt to and operate in unpredictable, dynamic, and ever-changing real-world environments. Factored representations, which break down complex state and action spaces into distinct components, can improve generalization and sample efficiency in policy learning. In this paper, we explore how the curriculum of an agent using a factored state representation affects the robustness of the learned policy. We experimentally demonstrate three simple curricula, such as varying only the variable of highest regret between episodes, that can significantly enhance policy robustness, offering practical insights for reinforcement learning in complex environments.