UC Berkeley
Abstract:Classical learning theory suggests that strong regularization is needed to learn a class with large complexity. This intuition is in contrast with the modern practice of machine learning, in particular learning neural networks, where the number of parameters often exceeds the number of data points. It has been observed empirically that such overparametrized models can show good generalization performance even if trained with vanishing or negative regularization. The aim of this work is to understand theoretically how this effect can occur, by studying the setting of ridge regression. We provide non-asymptotic generalization bounds for overparametrized ridge regression that depend on the arbitrary covariance structure of the data, and show that those bounds are tight for a range of regularization parameter values. To our knowledge this is the first work that studies overparametrized ridge regression in such a general setting. We identify when small or negative regularization is sufficient for obtaining small generalization error. On the technical side, our bounds only require the data vectors to be i.i.d. sub-gaussian, while most previous work assumes independence of the components of those vectors.
Abstract:In this paper, we present algorithms that perform gradient ascent of the average reward in a partially observable Markov decision process (POMDP). These algorithms are based on GPOMDP, an algorithm introduced in a companion paper (Baxter and Bartlett, this volume), which computes biased estimates of the performance gradient in POMDPs. The algorithm's chief advantages are that it uses only one free parameter beta, which has a natural interpretation in terms of bias-variance trade-off, it requires no knowledge of the underlying state, and it can be applied to infinite state, control and observation spaces. We show how the gradient estimates produced by GPOMDP can be used to perform gradient ascent, both with a traditional stochastic-gradient algorithm, and with an algorithm based on conjugate-gradients that utilizes gradient information to bracket maxima in line searches. Experimental results are presented illustrating both the theoretical results of (Baxter and Bartlett, this volume) on a toy problem, and practical aspects of the algorithms on a number of more realistic problems.
Abstract:Gradient-based approaches to direct policy search in reinforcement learning have received much recent attention as a means to solve problems of partial observability and to avoid some of the problems associated with policy degradation in value-function methods. In this paper we introduce GPOMDP, a simulation-based algorithm for generating a biased estimate of the gradient of the average reward in Partially Observable Markov Decision Processes POMDPs controlled by parameterized stochastic policies. A similar algorithm was proposed by (Kimura et al. 1995). The algorithm's chief advantages are that it requires storage of only twice the number of policy parameters, uses one free beta (which has a natural interpretation in terms of bias-variance trade-off), and requires no knowledge of the underlying state. We prove convergence of GPOMDP, and show how the correct choice of the parameter beta is related to the mixing time of the controlled POMDP. We briefly describe extensions of GPOMDP to controlled Markov chains, continuous state, observation and control spaces, multiple-agents, higher-order derivatives, and a version for training stochastic policies with internal states. In a companion paper (Baxter et al., this volume) we show how the gradient estimates generated by GPOMDP can be used in both a traditional stochastic gradient algorithm and a conjugate-gradient procedure to find local optima of the average reward.