Abstract:Light emission from galaxies exhibit diverse brightness profiles, influenced by factors such as galaxy type, structural features and interactions with other galaxies. Elliptical galaxies feature more uniform light distributions, while spiral and irregular galaxies have complex, varied light profiles due to their structural heterogeneity and star-forming activity. In addition, galaxies with an active galactic nucleus (AGN) feature intense, concentrated emission from gas accretion around supermassive black holes, superimposed on regular galactic light, while quasi-stellar objects (QSO) are the extreme case of the AGN emission dominating the galaxy. The challenge of identifying AGN and QSO has been discussed many times in the literature, often requiring multi-wavelength observations. This paper introduces a novel approach to identify AGN and QSO from a single image. Diffusion models have been recently developed in the machine-learning literature to generate realistic-looking images of everyday objects. Utilising the spatial resolving power of the Euclid VIS images, we created a diffusion model trained on one million sources, without using any source pre-selection or labels. The model learns to reconstruct light distributions of normal galaxies, since the population is dominated by them. We condition the prediction of the central light distribution by masking the central few pixels of each source and reconstruct the light according to the diffusion model. We further use this prediction to identify sources that deviate from this profile by examining the reconstruction error of the few central pixels regenerated in each source's core. Our approach, solely using VIS imaging, features high completeness compared to traditional methods of AGN and QSO selection, including optical, near-infrared, mid-infrared, and X-rays. [abridged]




Abstract:Context: in large-scale spatial surveys, the Point Spread Function (PSF) varies across the instrument field of view (FOV). Local measurements of the PSFs are given by the isolated stars images. Yet, these estimates may not be directly usable for post-processings because of the observational noise and potentially the aliasing. Aims: given a set of aliased and noisy stars images from a telescope, we want to estimate well-resolved and noise-free PSFs at the observed stars positions, in particular, exploiting the spatial correlation of the PSFs across the FOV. Contributions: we introduce RCA (Resolved Components Analysis) which is a noise-robust dimension reduction and super-resolution method based on matrix factorization. We propose an original way of using the PSFs spatial correlation in the restoration process through sparsity. The introduced formalism can be applied to correlated data sets with respect to any euclidean parametric space. Results: we tested our method on simulated monochromatic PSFs of Euclid telescope (launch planned for 2020). The proposed method outperforms existing PSFs restoration and dimension reduction methods. We show that a coupled sparsity constraint on individual PSFs and their spatial distribution yields a significant improvement on both the restored PSFs shapes and the PSFs subspace identification, in presence of aliasing. Perspectives: RCA can be naturally extended to account for the wavelength dependency of the PSFs.