Abstract:Masked diffusion language models (MDLM) have shown strong promise for non-autoregressive text generation, yet existing samplers act as implicit planners, selecting tokens to unmask via denoiser confidence or entropy scores. Such heuristics falter under parallel unmasking - they ignore pairwise interactions between tokens and cannot account for dependencies when unmasking multiple positions at once, limiting their inference time to traditional auto-regressive (AR) models. We introduce the Dilated-scheduled Unmasking Strategy (DUS), an inference-only, planner-model-free method that requires no additional training. DUS leverages a first-order Markov assumption to partition sequence positions into dilation-based groups of non-adjacent tokens, enabling independent, parallel unmasking steps that respect local context that minimizes the joint entropy of each iteration step. Unlike semi-AR block approaches (e.g., LLADA and Dream) that still invoke the denoiser per block, DUS reduces the number of denoiser calls to O(log B) per generation block - yielding substantial speedup over the O(B) run time of state-of-the-art diffusion models, where B is the block size in the semi-AR inference process. In experiments on math (GSM8K) and code completion (Humaneval, MBPP) benchmarks - domains suited to non-ordinal generation - DUS improves scores over parallel confidence-based planner, without modifying the underlying denoiser. DUS offers a lightweight, budget-aware approach to efficient, high-quality text generation, paving the way to unlock the true capabilities of MDLMs.
Abstract:Transfer entropy (TE) is a measurement in information theory that reveals the directional flow of information between processes, providing valuable insights for a wide range of real-world applications. This work proposes Transfer Entropy Estimation via Transformers (TREET), a novel transformer-based approach for estimating the TE for stationary processes. The proposed approach employs Donsker-Vardhan (DV) representation to TE and leverages the attention mechanism for the task of neural estimation. We propose a detailed theoretical and empirical study of the TREET, comparing it to existing methods. To increase its applicability, we design an estimated TE optimization scheme that is motivated by the functional representation lemma. Afterwards, we take advantage of the joint optimization scheme to optimize the capacity of communication channels with memory, which is a canonical optimization problem in information theory, and show the memory capabilities of our estimator. Finally, we apply TREET to real-world feature analysis. Our work, applied with state-of-the-art deep learning methods, opens a new door for communication problems which are yet to be solved.