Abstract:Artificial Intelligence (AI), particularly large language models (LLMs), holds the potential to bridge language and information gaps, which can benefit the economies of developing nations. However, our analysis of FLORES-200, FLORES+, Ethnologue, and World Development Indicators data reveals that these benefits largely favor English speakers. Speakers of languages in low-income and lower-middle-income countries face higher costs when using OpenAI's GPT models via APIs because of how the system processes the input -- tokenization. Around 1.5 billion people, speaking languages primarily from lower-middle-income countries, could incur costs that are 4 to 6 times higher than those faced by English speakers. Disparities in LLM performance are significant, and tokenization in models priced per token amplifies inequalities in access, cost, and utility. Moreover, using the quality of translation tasks as a proxy measure, we show that LLMs perform poorly in low-resource languages, presenting a ``double jeopardy" of higher costs and poor performance for these users. We also discuss the direct impact of fragmentation in tokenizing low-resource languages on climate. This underscores the need for fairer algorithm development to benefit all linguistic groups.
Abstract:Tabular data is a common form of organizing data. Multiple models are available to generate synthetic tabular datasets where observations are independent, but few have the ability to produce relational datasets. Modeling relational data is challenging as it requires modeling both a "parent" table and its relationships across tables. We introduce REaLTabFormer (Realistic Relational and Tabular Transformer), a tabular and relational synthetic data generation model. It first creates a parent table using an autoregressive GPT-2 model, then generates the relational dataset conditioned on the parent table using a sequence-to-sequence (Seq2Seq) model. We implement target masking to prevent data copying and propose the $Q_{\delta}$ statistic and statistical bootstrapping to detect overfitting. Experiments using real-world datasets show that REaLTabFormer captures the relational structure better than a baseline model. REaLTabFormer also achieves state-of-the-art results on prediction tasks, "out-of-the-box", for large non-relational datasets without needing fine-tuning.