Abstract:Synthetic aperture radar (SAR) images contain not only targets of interest but also complex background clutter, including terrain reflections and speckle noise. In many cases, such clutter exhibits intensity and patterns that resemble targets, leading models to extract entangled or spurious features. Such behavior undermines the ability to form clear target representations, regardless of the classifier. To address this challenge, we propose a novel object-centric learning (OCL) framework, named SlotSAR, that disentangles target representations from background clutter in SAR images without mask annotations. SlotSAR first extracts high-level semantic features from SARATR-X and low-level scattering features from the wavelet scattering network in order to obtain complementary multi-level representations for robust target characterization. We further present a multi-level slot attention module that integrates these low- and high-level features to enhance slot-wise representation distinctiveness, enabling effective OCL. Experimental results demonstrate that SlotSAR achieves state-of-the-art performance in SAR imagery by preserving structural details compared to existing OCL methods.
Abstract:Recently, computer-aided design models and electromagnetic simulations have been used to augment synthetic aperture radar (SAR) data for deep learning. However, an automatic target recognition (ATR) model struggles with domain shift when using synthetic data because the model learns specific clutter patterns present in such data, which disturbs performance when applied to measured data with different clutter distributions. This study proposes a framework particularly designed for domain-generalized SAR-ATR called IRASNet, enabling effective feature-level clutter reduction and domain-invariant feature learning. First, we propose a clutter reduction module (CRM) that maximizes the signal-to-clutter ratio on feature maps. The module reduces the impact of clutter at the feature level while preserving target and shadow information, thereby improving ATR performance. Second, we integrate adversarial learning with CRM to extract clutter-reduced domain-invariant features. The integration bridges the gap between synthetic and measured datasets without requiring measured data during training. Third, we improve feature extraction from target and shadow regions by implementing a positional supervision task using mask ground truth encoding. The improvement enhances the ability of the model to discriminate between classes. Our proposed IRASNet presents new state-of-the-art public SAR datasets utilizing target and shadow information to achieve superior performance across various test conditions. IRASNet not only enhances generalization performance but also significantly improves feature-level clutter reduction, making it a valuable advancement in the field of radar image pattern recognition.