Abstract:In this study, we develop Neural Machine Translation (NMT) and Transformer-based transfer learning models for English-to-Igbo translation - a low-resource African language spoken by over 40 million people across Nigeria and West Africa. Our models are trained on a curated and benchmarked dataset compiled from Bible corpora, local news, Wikipedia articles, and Common Crawl, all verified by native language experts. We leverage Recurrent Neural Network (RNN) architectures, including Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), enhanced with attention mechanisms to improve translation accuracy. To further enhance performance, we apply transfer learning using MarianNMT pre-trained models within the SimpleTransformers framework. Our RNN-based system achieves competitive results, closely matching existing English-Igbo benchmarks. With transfer learning, we observe a performance gain of +4.83 BLEU points, reaching an estimated translation accuracy of 70%. These findings highlight the effectiveness of combining RNNs with transfer learning to address the performance gap in low-resource language translation tasks.
Abstract:This survey paper presents a comprehensive and conceptual overview of anomaly detection using dynamic graphs. We focus on existing graph-based anomaly detection (AD) techniques and their applications to dynamic networks. The contributions of this survey paper include the following: i) a comparative study of existing surveys on anomaly detection; ii) a Dynamic Graph-based Anomaly Detection (DGAD) review framework in which approaches for detecting anomalies in dynamic graphs are grouped based on traditional machine-learning models, matrix transformations, probabilistic approaches, and deep-learning approaches; iii) a discussion of graphically representing both discrete and dynamic networks; and iv) a discussion of the advantages of graph-based techniques for capturing the relational structure and complex interactions in dynamic graph data. Finally, this work identifies the potential challenges and future directions for detecting anomalies in dynamic networks. This DGAD survey approach aims to provide a valuable resource for researchers and practitioners by summarizing the strengths and limitations of each approach, highlighting current research trends, and identifying open challenges. In doing so, it can guide future research efforts and promote advancements in anomaly detection in dynamic graphs. Keywords: Graphs, Anomaly Detection, dynamic networks,Graph Neural Networks (GNN), Node anomaly, Graph mining.