Abstract:Cochlear implants (CIs) play a vital role in restoring hearing for individuals with severe to profound sensorineural hearing loss by directly stimulating the auditory nerve with electrical signals. While traditional coding strategies, such as the advanced combination encoder (ACE), have proven effective, they are constrained by their adaptability and precision. This paper investigates the use of deep learning (DL) techniques to generate electrodograms for CIs, presenting our model as an advanced alternative. We compared the performance of our model with the ACE strategy by evaluating the intelligibility of reconstructed audio signals using the short-time objective intelligibility (STOI) metric. The results indicate that our model achieves a STOI score of 0.6031, closely approximating the 0.6126 score of the ACE strategy, and offers potential advantages in flexibility and adaptability. This study underscores the benefits of incorporating artificial intelligent (AI) into CI technology, such as enhanced personalization and efficiency.
Abstract:Automatic speech recognition (ASR) plays a pivotal role in our daily lives, offering utility not only for interacting with machines but also for facilitating communication for individuals with either partial or profound hearing impairments. The process involves receiving the speech signal in analogue form, followed by various signal processing algorithms to make it compatible with devices of limited capacity, such as cochlear implants (CIs). Unfortunately, these implants, equipped with a finite number of electrodes, often result in speech distortion during synthesis. Despite efforts by researchers to enhance received speech quality using various state-of-the-art signal processing techniques, challenges persist, especially in scenarios involving multiple sources of speech, environmental noise, and other circumstances. The advent of new artificial intelligence (AI) methods has ushered in cutting-edge strategies to address the limitations and difficulties associated with traditional signal processing techniques dedicated to CIs. This review aims to comprehensively review advancements in CI-based ASR and speech enhancement, among other related aspects. The primary objective is to provide a thorough overview of metrics and datasets, exploring the capabilities of AI algorithms in this biomedical field, summarizing and commenting on the best results obtained. Additionally, the review will delve into potential applications and suggest future directions to bridge existing research gaps in this domain.