Abstract:The Internet of Vehicles (IoV) is transforming transportation by enhancing connectivity and enabling autonomous driving. However, this increased interconnectivity introduces new security vulnerabilities. Bot malware and cyberattacks pose significant risks to Connected and Autonomous Vehicles (CAVs), as demonstrated by real-world incidents involving remote vehicle system compromise. To address these challenges, we propose an edge-based Intrusion Detection System (IDS) that monitors network traffic to and from CAVs. Our detection model is based on a meta-ensemble classifier capable of recognizing known (Nday) attacks and detecting previously unseen (zero-day) attacks. The approach involves training multiple Isolation Forest (IF) models on Multi-access Edge Computing (MEC) servers, with each IF specialized in identifying a specific type of botnet attack. These IFs, either trained locally or shared by other MEC nodes, are then aggregated using a Particle Swarm Optimization (PSO) based stacking strategy to construct a robust meta-classifier. The proposed IDS has been evaluated on a vehicular botnet dataset, achieving an average detection rate of 92.80% for N-day attacks and 77.32% for zero-day attacks. These results highlight the effectiveness of our solution in detecting both known and emerging threats, providing a scalable and adaptive defense mechanism for CAVs within the IoV ecosystem.
Abstract:The integration of Internet of Things (IoT) technology in various domains has led to operational advancements, but it has also introduced new vulnerabilities to cybersecurity threats, as evidenced by recent widespread cyberattacks on IoT devices. Intrusion detection systems are often reactive, triggered by specific patterns or anomalies observed within the network. To address this challenge, this work proposes a proactive approach to anticipate and preemptively mitigate malicious activities, aiming to prevent potential damage before it occurs. This paper proposes an innovative intrusion prediction framework empowered by Pre-trained Large Language Models (LLMs). The framework incorporates two LLMs: a fine-tuned Bidirectional and AutoRegressive Transformers (BART) model for predicting network traffic and a fine-tuned Bidirectional Encoder Representations from Transformers (BERT) model for evaluating the predicted traffic. By harnessing the bidirectional capabilities of BART the framework then identifies malicious packets among these predictions. Evaluated using the CICIoT2023 IoT attack dataset, our framework showcases a notable enhancement in predictive performance, attaining an impressive 98% overall accuracy, providing a powerful response to the cybersecurity challenges that confront IoT networks.
Abstract:In recent years, numerous large-scale cyberattacks have exploited Internet of Things (IoT) devices, a phenomenon that is expected to escalate with the continuing proliferation of IoT technology. Despite considerable efforts in attack detection, intrusion detection systems remain mostly reactive, responding to specific patterns or observed anomalies. This work proposes a proactive approach to anticipate and mitigate malicious activities before they cause damage. This paper proposes a novel network intrusion prediction framework that combines Large Language Models (LLMs) with Long Short Term Memory (LSTM) networks. The framework incorporates two LLMs in a feedback loop: a fine-tuned Generative Pre-trained Transformer (GPT) model for predicting network traffic and a fine-tuned Bidirectional Encoder Representations from Transformers (BERT) for evaluating the predicted traffic. The LSTM classifier model then identifies malicious packets among these predictions. Our framework, evaluated on the CICIoT2023 IoT attack dataset, demonstrates a significant improvement in predictive capabilities, achieving an overall accuracy of 98%, offering a robust solution to IoT cybersecurity challenges.