Abstract:The recent integration of artificial intelligence into medical imaging has driven remarkable advances in automated organ segmentation. However, most existing 3D segmentation frameworks rely exclusively on visual learning from large annotated datasets restricting their adaptability to new domains and clinical tasks. The lack of semantic understanding in these models makes them ineffective in addressing flexible, user-defined segmentation objectives. To overcome these limitations, we propose SwinTF3D, a lightweight multimodal fusion approach that unifies visual and linguistic representations for text-guided 3D medical image segmentation. The model employs a transformer-based visual encoder to extract volumetric features and integrates them with a compact text encoder via an efficient fusion mechanism. This design allows the system to understand natural-language prompts and correctly align semantic cues with their corresponding spatial structures in medical volumes, while producing accurate, context-aware segmentation results with low computational overhead. Extensive experiments on the BTCV dataset demonstrate that SwinTF3D achieves competitive Dice and IoU scores across multiple organs, despite its compact architecture. The model generalizes well to unseen data and offers significant efficiency gains compared to conventional transformer-based segmentation networks. Bridging visual perception with linguistic understanding, SwinTF3D establishes a practical and interpretable paradigm for interactive, text-driven 3D medical image segmentation, opening perspectives for more adaptive and resource-efficient solutions in clinical imaging.
Abstract:This work presents an attack-aware deepfake and image-forensics detector designed for robustness, well-calibrated probabilities, and transparent evidence under realistic deployment conditions. The method combines red-team training with randomized test-time defense in a two-stream architecture, where one stream encodes semantic content using a pretrained backbone and the other extracts forensic residuals, fused via a lightweight residual adapter for classification, while a shallow Feature Pyramid Network style head produces tamper heatmaps under weak supervision. Red-team training applies worst-of-K counter-forensics per batch, including JPEG realign and recompress, resampling warps, denoise-to-regrain operations, seam smoothing, small color and gamma shifts, and social-app transcodes, while test-time defense injects low-cost jitters such as resize and crop phase changes, mild gamma variation, and JPEG phase shifts with aggregated predictions. Heatmaps are guided to concentrate within face regions using face-box masks without strict pixel-level annotations. Evaluation on existing benchmarks, including standard deepfake datasets and a surveillance-style split with low light and heavy compression, reports clean and attacked performance, AUC, worst-case accuracy, reliability, abstention quality, and weak-localization scores. Results demonstrate near-perfect ranking across attacks, low calibration error, minimal abstention risk, and controlled degradation under regrain, establishing a modular, data-efficient, and practically deployable baseline for attack-aware detection with calibrated probabilities and actionable heatmaps.




Abstract:Like other fields of Traditional Medicines, Unani Medicines have been found as an effective medical practice for ages. It is still widely used in the subcontinent, particularly in Pakistan and India. However, Unani Medicines Practitioners are lacking modern IT applications in their everyday clinical practices. An Online Clinical Decision Support System may address this challenge to assist apprentice Unani Medicines practitioners in their diagnostic processes. The proposed system provides a web-based interface to enter the patient's symptoms, which are then automatically analyzed by our system to generate a list of probable diseases. The system allows practitioners to choose the most likely disease and inform patients about the associated treatment options remotely. The system consists of three modules: an Online Clinical Decision Support System, an Artificial Intelligence Inference Engine, and a comprehensive Unani Medicines Database. The system employs advanced AI techniques such as Decision Trees, Deep Learning, and Natural Language Processing. For system development, the project team used a technology stack that includes React, FastAPI, and MySQL. Data and functionality of the application is exposed using APIs for integration and extension with similar domain applications. The novelty of the project is that it addresses the challenge of diagnosing diseases accurately and efficiently in the context of Unani Medicines principles. By leveraging the power of technology, the proposed Clinical Decision Support System has the potential to ease access to healthcare services and information, reduce cost, boost practitioner and patient satisfaction, improve speed and accuracy of the diagnostic process, and provide effective treatments remotely. The application will be useful for Unani Medicines Practitioners, Patients, Government Drug Regulators, Software Developers, and Medical Researchers.