Abstract:Automated and accurate human activity recognition (HAR) using body-worn sensors enables practical and cost efficient remote monitoring of Activity of DailyLiving (ADL), which are shown to provide clinical insights across multiple therapeutic areas. Development of accurate algorithms for human activity recognition(HAR) is hindered by the lack of large real-world labeled datasets. Furthermore, algorithms seldom work beyond the specific sensor on which they are prototyped, prompting debate about whether accelerometer-based HAR is even possible [Tong et al., 2020]. Here we develop a 6-class HAR model with strong performance when evaluated on real-world datasets not seen during training. Our model is based on a frozen self-supervised representation learned on a large unlabeled dataset, combined with a shallow multi-layer perceptron with temporal smoothing. The model obtains in-dataset state-of-the art performance on the Capture24 dataset ($\kappa= 0.86$). Out-of-distribution (OOD) performance is $\kappa = 0.7$, with both the representation and the perceptron models being trained on data from a different sensor. This work represents a key step towards device-agnostic HAR models, which can help contribute to increased standardization of model evaluation in the HAR field.




Abstract:Measures of Activity of Daily Living (ADL) are an important indicator of overall health but difficult to measure in-clinic. Automated and accurate human activity recognition (HAR) using wrist-worn accelerometers enables practical and cost efficient remote monitoring of ADL. Key obstacles in developing high quality HAR is the lack of large labeled datasets and the performance loss when applying models trained on small curated datasets to the continuous stream of heterogeneous data in real-life. In this work we design a self-supervised learning paradigm to create a robust representation of accelerometer data that can generalize across devices and subjects. We demonstrate that this representation can separate activities of daily living and achieve strong HAR accuracy (on multiple benchmark datasets) using very few labels. We also propose a segmentation algorithm which can identify segments of salient activity and boost HAR accuracy on continuous real-life data.