Abstract:Purpose: Myocardium segmentation in echocardiography videos is a challenging task due to low contrast, noise, and anatomical variability. Traditional deep learning models either process frames independently, ignoring temporal information, or rely on memory-based feature propagation, which accumulates error over time. Methods: We propose Point-Seg, a transformer-based segmentation framework that integrates point tracking as a temporal cue to ensure stable and consistent segmentation of myocardium across frames. Our method leverages a point-tracking module trained on a synthetic echocardiography dataset to track key anatomical landmarks across video sequences. These tracked trajectories provide an explicit motion-aware signal that guides segmentation, reducing drift and eliminating the need for memory-based feature accumulation. Additionally, we incorporate a temporal smoothing loss to further enhance temporal consistency across frames. Results: We evaluate our approach on both public and private echocardiography datasets. Experimental results demonstrate that Point-Seg has statistically similar accuracy in terms of Dice to state-of-the-art segmentation models in high quality echo data, while it achieves better segmentation accuracy in lower quality echo with improved temporal stability. Furthermore, Point-Seg has the key advantage of pixel-level myocardium motion information as opposed to other segmentation methods. Such information is essential in the computation of other downstream tasks such as myocardial strain measurement and regional wall motion abnormality detection. Conclusion: Point-Seg demonstrates that point tracking can serve as an effective temporal cue for consistent video segmentation, offering a reliable and generalizable approach for myocardium segmentation in echocardiography videos. The code is available at https://github.com/DeepRCL/PointSeg.
Abstract:Purpose: Echocardiographic interpretation requires video-level reasoning and guideline-based measurement analysis, which current deep learning models for cardiac ultrasound do not support. We present EchoAgent, a framework that enables structured, interpretable automation for this domain. Methods: EchoAgent orchestrates specialized vision tools under Large Language Model (LLM) control to perform temporal localization, spatial measurement, and clinical interpretation. A key contribution is a measurement-feasibility prediction model that determines whether anatomical structures are reliably measurable in each frame, enabling autonomous tool selection. We curated a benchmark of diverse, clinically validated video-query pairs for evaluation. Results: EchoAgent achieves accurate, interpretable results despite added complexity of spatiotemporal video analysis. Outputs are grounded in visual evidence and clinical guidelines, supporting transparency and traceability. Conclusion: This work demonstrates the feasibility of agentic, guideline-aligned reasoning for echocardiographic video analysis, enabled by task-specific tools and full video-level automation. EchoAgent sets a new direction for trustworthy AI in cardiac ultrasound.