Abstract:Accurate, high-resolution projections of the Greenland ice sheet's surface mass balance (SMB) and surface temperature are essential for understanding future sea-level rise, yet current approaches are either computationally demanding or limited to coarse spatial scales. Here, we introduce a novel physics-constrained generative modeling framework based on a consistency model (CM) to downscale low-resolution SMB and surface temperature fields by a factor of up to 32 (from 160 km to 5 km grid spacing) in a few sampling steps. The CM is trained on monthly outputs of the regional climate model MARv3.12 and conditioned on ice-sheet topography and insolation. By enforcing a hard conservation constraint during inference, we ensure approximate preservation of SMB and temperature sums on the coarse spatial scale as well as robust generalization to extreme climate states without retraining. On the test set, our constrained CM achieves a continued ranked probability score of 6.31 mmWE for the SMB and 0.1 K for the surface temperature, outperforming interpolation-based downscaling. Together with spatial power-spectral analysis, we demonstrate that the CM faithfully reproduces variability across spatial scales. We further apply bias-corrected outputs of the NorESM2 Earth System Model as inputs to our CM, to demonstrate the potential of our model to directly downscale ESM fields. Our approach delivers realistic, high-resolution climate forcing for ice-sheet simulations with fast inference and can be readily integrated into Earth-system and ice-sheet model workflows to improve projections of the future contribution to sea-level rise from Greenland and potentially other ice sheets and glaciers too.
Abstract:Historical records of climate fields are often sparse due to missing measurements, especially before the introduction of large-scale satellite missions. Several statistical and model-based methods have been introduced to fill gaps and reconstruct historical records. Here, we employ a recently introduced deep-learning approach based on Fourier convolutions, trained on numerical climate model output, to reconstruct historical climate fields. Using this approach we are able to realistically reconstruct large and irregular areas of missing data, as well as reconstruct known historical events such as strong El Ni\~no and La Ni\~na with very little given information. Our method outperforms the widely used statistical kriging method as well as other recent machine learning approaches. The model generalizes to higher resolutions than the ones it was trained on and can be used on a variety of climate fields. Moreover, it allows inpainting of masks never seen before during the model training.