Abstract:Blockchain and smart contracts have garnered significant interest in recent years as the foundation of a decentralized, trustless digital ecosystem, thereby eliminating the need for traditional centralized authorities. Despite their central role in powering Web3, their complexity still presents significant barriers for non-expert users. To bridge this gap, Artificial Intelligence (AI)-based agents have emerged as valuable tools for interacting with blockchain environments, supporting a range of tasks, from analyzing on-chain data and optimizing transaction strategies to detecting vulnerabilities within smart contracts. While interest in applying AI to blockchain is growing, the literature still lacks a comprehensive survey that focuses specifically on the intersection with AI agents. Most of the related work only provides general considerations, without focusing on any specific domain. This paper addresses this gap by presenting the first Systematization of Knowledge dedicated to AI-driven systems for blockchain, with a special focus on their security and privacy dimensions, shedding light on their applications, limitations, and future research directions.
Abstract:Federated Learning (FL) enables collaborative training of a Machine Learning (ML) model across multiple parties, facilitating the preservation of users' and institutions' privacy by keeping data stored locally. Instead of centralizing raw data, FL exchanges locally refined model parameters to build a global model incrementally. While FL is more compliant with emerging regulations such as the European General Data Protection Regulation (GDPR), ensuring the right to be forgotten in this context - allowing FL participants to remove their data contributions from the learned model - remains unclear. In addition, it is recognized that malicious clients may inject backdoors into the global model through updates, e.g. to generate mispredictions on specially crafted data examples. Consequently, there is the need for mechanisms that can guarantee individuals the possibility to remove their data and erase malicious contributions even after aggregation, without compromising the already acquired "good" knowledge. This highlights the necessity for novel Federated Unlearning (FU) algorithms, which can efficiently remove specific clients' contributions without full model retraining. This survey provides background concepts, empirical evidence, and practical guidelines to design/implement efficient FU schemes. Our study includes a detailed analysis of the metrics for evaluating unlearning in FL and presents an in-depth literature review categorizing state-of-the-art FU contributions under a novel taxonomy. Finally, we outline the most relevant and still open technical challenges, by identifying the most promising research directions in the field.