Abstract:Recent work shows that fine-tuned Large Language Models (LLMs) can achieve high valid plan rates on PDDL planning tasks. However, it remains unclear whether this reflects transferable planning competence or domain-specific memorization. In this work, we fine-tune a 1.7B-parameter LLM on 40,000 domain-problem-plan tuples from 10 IPC 2023 domains, and evaluate both in-domain and cross-domain generalization. While the model reaches 82.9% valid plan rate in in-domain conditions, it achieves 0% on two unseen domains. To analyze this failure, we introduce three diagnostic interventions, namely (i) instance-wise symbol anonymization, (ii) compact plan serialization, and (iii) verifier-reward fine-tuning using the VAL validator as a success-focused reinforcement signal. Symbol anonymization and compact serialization cause significant performance drops despite preserving plan semantics, thus revealing strong sensitivity to surface representations. Verifier-reward fine-tuning reaches performance saturation in half the supervised training epochs, but does not improve cross-domain generalization. For the explored configurations, in-domain performance plateaus around 80%, while cross-domain performance collapses, suggesting that our fine-tuned model relies heavily on domain-specific patterns rather than transferable planning competence in this setting. Our results highlight a persistent generalization gap in LLM-based planning and provide diagnostic tools for studying its causes.
Abstract:PDDL-based symbolic task planning remains pivotal for robot autonomy yet struggles with dynamic human-robot collaboration due to scalability, re-planning demands, and delayed plan availability. Although a few neurosymbolic frameworks have previously leveraged LLMs such as GPT-3 to address these challenges, reliance on closed-source, remote models with limited context introduced critical constraints: third-party dependency, inconsistent response times, restricted plan length and complexity, and multi-domain scalability issues. We present Gideon, a novel framework that enables the transition to modern, smaller, local LLMs with extended context length. Gideon integrates a novel problem generator to systematically generate large-scale datasets of realistic domain-problem-plan tuples for any domain, and adapts neurosymbolic planning for local LLMs, enabling on-device execution and extended context for multi-domain support. Preliminary experiments in single-domain scenarios performed on Qwen-2.5 1.5B and trained on 8k-32k samples, demonstrate a valid plan percentage of 66.1% (32k model) and show that the figure can be further scaled through additional data. Multi-domain tests on 16k samples yield an even higher 70.6% planning validity rate, proving extensibility across domains and signaling that data variety can have a positive effect on learning efficiency. Although long-horizon planning and reduced model size make Gideon training much less efficient than baseline models based on larger LLMs, the results are still significant considering that the trained model is about 120x smaller than baseline and that significant advantages can be achieved in inference efficiency, scalability, and multi-domain adaptability, all critical factors in human-robot collaboration. Training inefficiency can be mitigated by Gideon's streamlined data generation pipeline.