Abstract:Langevin algorithms are popular Markov chain Monte Carlo (MCMC) methods for large-scale sampling problems that often arise in data science. We propose Monte Carlo algorithms based on the discretizations of $P$-th order Langevin dynamics for any $P\geq 3$. Our design of $P$-th order Langevin Monte Carlo (LMC) algorithms is by combining splitting and accurate integration methods. We obtain Wasserstein convergence guarantees for sampling from distributions with log-concave and smooth densities. Specifically, the mixing time of the $P$-th order LMC algorithm scales as $O\left(d^{\frac{1}{R}}/\epsilon^{\frac{1}{2R}}\right)$ for $R=4\cdot 1_{\{ P=3\}}+ (2P-1)\cdot 1_{\{ P\geq 4\}}$, which has a better dependence on the dimension $d$ and the accuracy level $\epsilon$ as $P$ grows. Numerical experiments illustrate the efficiency of our proposed algorithms.
Abstract:Langevin algorithms are popular Markov chain Monte Carlo methods that are often used to solve high-dimensional large-scale sampling problems in machine learning. The most classical Langevin Monte Carlo algorithm is based on the overdamped Langevin dynamics. There are many variants of Langevin dynamics that often show superior performance in practice. In this paper, we provide a unified approach to study the acceleration of the variants of the overdamped Langevin dynamics through the lens of large deviations theory. Numerical experiments using both synthetic and real data are provided to illustrate the efficiency of these variants.