Abstract:Sparse-view Cone-Beam Computed Tomography reconstruction from limited X-ray projections remains a challenging problem in medical imaging due to the inherent undersampling of fine-grained anatomical details, which correspond to high-frequency components. Conventional CNN-based methods often struggle to recover these fine structures, as they are typically biased toward learning low-frequency information. To address this challenge, this paper presents DuFal (Dual-Frequency-Aware Learning), a novel framework that integrates frequency-domain and spatial-domain processing via a dual-path architecture. The core innovation lies in our High-Local Factorized Fourier Neural Operator, which comprises two complementary branches: a Global High-Frequency Enhanced Fourier Neural Operator that captures global frequency patterns and a Local High-Frequency Enhanced Fourier Neural Operator that processes spatially partitioned patches to preserve spatial locality that might be lost in global frequency analysis. To improve efficiency, we design a Spectral-Channel Factorization scheme that reduces the Fourier Neural Operator parameter count. We also design a Cross-Attention Frequency Fusion module to integrate spatial and frequency features effectively. The fused features are then decoded through a Feature Decoder to produce projection representations, which are subsequently processed through an Intensity Field Decoding pipeline to reconstruct a final Computed Tomography volume. Experimental results on the LUNA16 and ToothFairy datasets demonstrate that DuFal significantly outperforms existing state-of-the-art methods in preserving high-frequency anatomical features, particularly under extremely sparse-view settings.
Abstract:Zero-shot Text-to-Speech (TTS) aims to synthesize high-quality speech that mimics the voice of an unseen speaker using only a short reference sample, requiring not only speaker adaptation but also accurate modeling of prosodic attributes. Recent approaches based on language models, diffusion, and flow matching have shown promising results in zero-shot TTS, but still suffer from slow inference and repetition artifacts. Discrete codec representations have been widely adopted for speech synthesis, and recent works have begun to explore diffusion models in purely discrete settings, suggesting the potential of discrete generative modeling for speech synthesis. However, existing flow-matching methods typically embed these discrete tokens into a continuous space and apply continuous flow matching, which may not fully leverage the advantages of discrete representations. To address these challenges, we introduce DiFlow-TTS, which, to the best of our knowledge, is the first model to explore purely Discrete Flow Matching for speech synthesis. DiFlow-TTS explicitly models factorized speech attributes within a compact and unified architecture. It leverages in-context learning by conditioning on textual content, along with prosodic and acoustic attributes extracted from a reference speech, enabling effective attribute cloning in a zero-shot setting. In addition, the model employs a factorized flow prediction mechanism with distinct heads for prosody and acoustic details, allowing it to learn aspect-specific distributions. Experimental results demonstrate that DiFlow-TTS achieves promising performance in several key metrics, including naturalness, prosody, preservation of speaker style, and energy control. It also maintains a compact model size and achieves low-latency inference, generating speech up to 25.8 times faster than the latest existing baselines.