Heudiasyc
Abstract:Group decision-making is becoming increasingly common in areas such as education, dining, travel, and finance, where collaborative choices must balance diverse individual preferences. While conventional recommender systems are effective in personalization, they fall short in group settings due to their inability to manage conflicting preferences, contextual factors, and multiple evaluation criteria. This study presents the development of a Context-Aware Multi-Criteria Group Recommender System (CA-MCGRS) designed to address these challenges by integrating contextual factors and multiple criteria to enhance recommendation accuracy. By leveraging a Multi-Head Attention mechanism, our model dynamically weighs the importance of different features. Experiments conducted on an educational dataset with varied ratings and contextual variables demonstrate that CA-MCGRS consistently outperforms other approaches across four scenarios. Our findings underscore the importance of incorporating context and multi-criteria evaluations to improve group recommendations, offering valuable insights for developing more effective group recommender systems.


Abstract:In this article, we present the BTransformer18 model, a deep learning architecture designed for multi-label relation extraction in French texts. Our approach combines the contextual representation capabilities of pre-trained language models from the BERT family - such as BERT, RoBERTa, and their French counterparts CamemBERT and FlauBERT - with the power of Transformer encoders to capture long-term dependencies between tokens. Experiments conducted on the dataset from the TextMine'25 challenge show that our model achieves superior performance, particularly when using CamemBERT-Large, with a macro F1 score of 0.654, surpassing the results obtained with FlauBERT-Large. These results demonstrate the effectiveness of our approach for the automatic extraction of complex relations in intelligence reports.
Abstract:Measuring similarity between RDF graphs is essential for various applications, including knowledge discovery, semantic web analysis, and recommender systems. However, traditional similarity measures often treat all properties equally, potentially overlooking the varying importance of different properties in different contexts. Consequently, exploring weighted property approaches for RDF graph similarity measure presents an intriguing avenue for investigation. Therefore, in this paper, we propose a weighted property approach for RDF graph similarity measure to address this limitation. Our approach incorporates the relative importance of properties into the similarity calculation, enabling a more nuanced and context-aware measures of similarity. We evaluate our approach through a comprehensive experimental study on an RDF graph dataset in the vehicle domain. Our results demonstrate that the proposed approach achieves promising accuracy and effectively reflects the perceived similarity between RDF graphs.
Abstract:In today's data-rich environment, recommender systems play a crucial role in decision support systems. They provide to users personalized recommendations and explanations about these recommendations. Embedding-based models, despite their widespread use, often suffer from a lack of interpretability, which can undermine trust and user engagement. This paper presents an approach that combines embedding-based and semantic-based models to generate post-hoc explanations in recommender systems, leveraging ontology-based knowledge graphs to improve interpretability and explainability. By organizing data within a structured framework, ontologies enable the modeling of intricate relationships between entities, which is essential for generating explanations. By combining embedding-based and semantic based models for post-hoc explanations in recommender systems, the framework we defined aims at producing meaningful and easy-to-understand explanations, enhancing user trust and satisfaction, and potentially promoting the adoption of recommender systems across the e-commerce sector.




Abstract:Recognizing and learning from similar crisis situations is crucial for the development of effective response strategies. This study addresses the challenge of identifying similarities within a wide range of crisis-related information. To overcome this challenge, we employed an ontology-based crisis situation knowledge base enriched with crisis-related information. Additionally, we implemented a semantic similarity measure to assess the degree of similarity between crisis situations. Our investigation specifically focuses on recognizing similar crises through the application of ontology-based knowledge mining. Through our experiments, we demonstrate the accuracy and efficiency of our approach to recognizing similar crises. These findings highlight the potential of ontology-based knowledge mining for enhancing crisis recognition processes and improving overall crisis management strategies.
Abstract:Crisis situations can present complex and multifaceted challenges, often requiring the involvement of multiple organizations and stakeholders with varying areas of expertise, responsibilities, and resources. Acquiring accurate and timely information about impacted areas is crucial to effectively respond to these crises. In this paper, we investigate how collaborative and social technologies help to contextualize crises, including identifying impacted areas and real-time needs. To this end, we define CORec-Cri (Contextulized Ontology-based Recommender system for crisis management) based on existing work. Our motivation for this approach is two-fold: first, effective collaboration among stakeholders is essential for efficient and coordinated crisis response; second, social computing facilitates interaction, information flow, and collaboration among stakeholders. We detail the key components of our system design, highlighting its potential to support decision-making, resource allocation, and communication among stakeholders. Finally, we provide examples of how our system can be applied to contextualize crises to improve crisis management.
Abstract:In the digital age, it is crucial to understand and tailor experiences for users interacting with systems and applications. This requires the creation of user contextual profiles that combine user profiles with contextual information. However, there is a lack of research on the integration of contextual information with different user profiles. This study aims to address this gap by designing a user contextual profile ontology that considers both user profiles and contextual information on each profile. Specifically, we present a design and development of the user contextual profile ontology with a focus on the vehicle sales domain. Our designed ontology serves as a structural foundation for standardizing the representation of user profiles and contextual information, enhancing the system's ability to capture user preferences and contextual information of the user accurately. Moreover, we illustrate a case study using the User Contextual Profile Ontology in generating personalized recommendations for vehicle sales domain.
Abstract:In today's era of information explosion, more users are becoming more reliant upon recommender systems to have better advice, suggestions, or inspire them. The measure of the semantic relatedness or likeness between terms, words, or text data plays an important role in different applications dealing with textual data, as in a recommender system. Over the past few years, many ontologies have been developed and used as a form of structured representation of knowledge bases for information systems. The measure of semantic similarity from ontology has developed by several methods. In this paper, we propose and carry on an approach for the improvement of semantic similarity calculations within a recommender system based-on RDF graphs.
Abstract:Knowledge graphs have proven to be effective for modeling entities and their relationships through the use of ontologies. The recent emergence in interest for using knowledge graphs as a form of information modeling has led to their increased adoption in recommender systems. By incorporating users and items into the knowledge graph, these systems can better capture the implicit connections between them and provide more accurate recommendations. In this paper, we investigate and propose the construction of a personalized recommender system via knowledge graphs embedding applied to the vehicle purchase/sale domain. The results of our experimentation demonstrate the efficacy of the proposed method in providing relevant recommendations that are consistent with individual users.
Abstract:Knowledge graphs, represented in RDF, are able to model entities and their relations by means of ontologies. The use of knowledge graphs for information modeling has attracted interest in recent years. In recommender systems, items and users can be mapped and integrated into the knowledge graph, which can represent more links and relationships between users and items. Constraint-based recommender systems are based on the idea of explicitly exploiting deep recommendation knowledge through constraints to identify relevant recommendations. When combined with knowledge graphs, a constraint-based recommender system gains several benefits in terms of constraint sets. In this paper, we investigate and propose the construction of a constraint-based recommender system via RDF knowledge graphs applied to the vehicle purchase/sale domain. The results of our experiments show that the proposed approach is able to efficiently identify recommendations in accordance with user preferences.