Abstract:The automated generation of radiology reports from chest X-ray images holds significant promise in enhancing diagnostic workflows while preserving patient privacy. Traditional centralized approaches often require sensitive data transfer, posing privacy concerns. To address this, the study proposes a Multimodal Federated Learning framework for chest X-ray report generation using the IU-Xray dataset. The system utilizes a Vision Transformer (ViT) as the encoder and GPT-2 as the report generator, enabling decentralized training without sharing raw data. Three Federated Learning (FL) aggregation strategies: FedAvg, Krum Aggregation and a novel Loss-aware Federated Averaging (L-FedAvg) were evaluated. Among these, Krum Aggregation demonstrated superior performance across lexical and semantic evaluation metrics such as ROUGE, BLEU, BERTScore and RaTEScore. The results show that FL can match or surpass centralized models in generating clinically relevant and semantically rich radiology reports. This lightweight and privacy-preserving framework paves the way for collaborative medical AI development without compromising data confidentiality.
Abstract:Radiology plays a pivotal role in modern medicine due to its non-invasive diagnostic capabilities. However, the manual generation of unstructured medical reports is time consuming and prone to errors. It creates a significant bottleneck in clinical workflows. Despite advancements in AI-generated radiology reports, challenges remain in achieving detailed and accurate report generation. In this study we have evaluated different combinations of multimodal models that integrate Computer Vision and Natural Language Processing to generate comprehensive radiology reports. We employed a pretrained Vision Transformer (ViT-B16) and a SWIN Transformer as the image encoders. The BART and GPT-2 models serve as the textual decoders. We used Chest X-ray images and reports from the IU-Xray dataset to evaluate the usability of the SWIN Transformer-BART, SWIN Transformer-GPT-2, ViT-B16-BART and ViT-B16-GPT-2 models for report generation. We aimed at finding the best combination among the models. The SWIN-BART model performs as the best-performing model among the four models achieving remarkable results in almost all the evaluation metrics like ROUGE, BLEU and BERTScore.
Abstract:Depression detection using deep learning models has been widely explored in previous studies, especially due to the large amounts of data available from social media posts. These posts provide valuable information about individuals' mental health conditions and can be leveraged to train models and identify patterns in the data. However, distributed learning approaches have not been extensively explored in this domain. In this study, we adopt Federated Learning (FL) to facilitate decentralized training on smartphones while protecting user data privacy. We train three neural network architectures--GRU, RNN, and LSTM on Reddit posts to detect signs of depression and evaluate their performance under heterogeneous FL settings. To optimize the training process, we leverage a common tokenizer across all client devices, which reduces the computational load. Additionally, we analyze resource consumption and communication costs on smartphones to assess their impact in a real-world FL environment. Our experimental results demonstrate that the federated models achieve comparable performance to the centralized models. This study highlights the potential of FL for decentralized mental health prediction by providing a secure and efficient model training process on edge devices.