Abstract:Evaluating foundation models for crystallographic reasoning requires benchmarks that isolate generalization behavior while enforcing physical constraints. This work introduces a multiscale multicrystal dataset with two physically grounded evaluation protocols to stress-test multimodal generative models. The Spatial-Exclusion benchmark withholds all supercells of a given radius from a diverse dataset, enabling controlled assessments of spatial interpolation and extrapolation. The Compositional-Exclusion benchmark omits all samples of a specific chemical composition, probing generalization across stoichiometries. Nine vision--language foundation models are prompted with crystallographic images and textual context to generate structural annotations. Responses are evaluated via (i) relative errors in lattice parameters and density, (ii) a physics-consistency index penalizing volumetric violations, and (iii) a hallucination score capturing geometric outliers and invalid space-group predictions. These benchmarks establish a reproducible, physically informed framework for assessing generalization, consistency, and reliability in large-scale multimodal models. Dataset and code are available at https://github.com/KurbanIntelligenceLab/StressTestingMMFMinCR.
Abstract:Molecular graph neural networks (GNNs) often focus exclusively on XYZ-based geometric representations and thus overlook valuable chemical context available in public databases like PubChem. This work introduces a multimodal framework that integrates textual descriptors, such as IUPAC names, molecular formulas, physicochemical properties, and synonyms, alongside molecular graphs. A gated fusion mechanism balances geometric and textual features, allowing models to exploit complementary information. Experiments on benchmark datasets indicate that adding textual data yields notable improvements for certain electronic properties, while gains remain limited for others. Furthermore, the GNN architectures display similar performance patterns (improving and deteriorating on analogous targets), suggesting they learn comparable representations rather than distinctly different physical insights.