Abstract:Predictive process monitoring techniques support the operational decision making by predicting future states of ongoing cases of a business process. A subset of these techniques predict the remaining sequence of activities of an ongoing case (case suffix prediction). Existing approaches for case suffix prediction generate sequences of activities with a single timestamp (e.g. the end timestamp). This output is insufficient for resource capacity planning, where we need to reason about the periods of time when resources will be busy performing work. This paper introduces a technique for predicting case suffixes consisting of activities with start and end timestamps. In other words, the proposed technique predicts both the waiting time and the processing time of each activity. Since the waiting time of an activity in a case depends on how busy resources are in other cases, the technique adopts a sweep-line approach, wherein the suffixes of all ongoing cases in the process are predicted in lockstep, rather than predictions being made for each case in isolation. An evaluation on real-life and synthetic datasets compares the accuracy of different instantiations of this approach, demonstrating the advantages of a multi-model approach to case suffix prediction.




Abstract:Predictive process monitoring is an evolving research field that studies how to train and use predictive models for operational decision-making. One of the problems studied in this field is that of predicting the sequence of upcoming activities in a case up to its completion, a.k.a. the case suffix. The prediction of case suffixes provides input to estimate short-term workloads and execution times under different resource schedules. Existing methods to address this problem often generate suffixes wherein some activities are repeated many times, whereas this pattern is not observed in the data. Closer examination shows that this shortcoming stems from the approach used to sample the successive activity instances to generate a case suffix. Accordingly, the paper introduces a sampling approach aimed at reducing repetitions of activities in the predicted case suffixes. The approach, namely Daemon action, strikes a balance between exploration and exploitation when generating the successive activity instances. We enhance a deep learning approach for case suffix predictions using this sampling approach, and experimentally show that the enhanced approach outperforms the unenhanced ones with respect to control-flow accuracy measures.