Abstract:Research on evaluating and analyzing large language models (LLMs) has been extensive for resource-rich languages such as English, yet their performance in languages such as Persian has received considerably less attention. This paper introduces FarsEval-PKBETS benchmark, a subset of FarsEval project for evaluating large language models in Persian. This benchmark consists of 4000 questions and answers in various formats, including multiple choice, short answer and descriptive responses. It covers a wide range of domains and tasks,including medicine, law, religion, Persian language, encyclopedic knowledge, human preferences, social knowledge, ethics and bias, text generation, and respecting others' rights. This bechmark incorporates linguistics, cultural, and local considerations relevant to the Persian language and Iran. To ensure the questions are challenging for current LLMs, three models -- Llama3-70B, PersianMind, and Dorna -- were evaluated using this benchmark. Their average accuracy was below 50%, meaning they provided fully correct answers to fewer than half of the questions. These results indicate that current language models are still far from being able to solve this benchmark
Abstract:We introduce FaBERT, a Persian BERT-base model pre-trained on the HmBlogs corpus, encompassing both informal and formal Persian texts. FaBERT is designed to excel in traditional Natural Language Understanding (NLU) tasks, addressing the intricacies of diverse sentence structures and linguistic styles prevalent in the Persian language. In our comprehensive evaluation of FaBERT on 12 datasets in various downstream tasks, encompassing Sentiment Analysis (SA), Named Entity Recognition (NER), Natural Language Inference (NLI), Question Answering (QA), and Question Paraphrasing (QP), it consistently demonstrated improved performance, all achieved within a compact model size. The findings highlight the importance of utilizing diverse and cleaned corpora, such as HmBlogs, to enhance the performance of language models like BERT in Persian Natural Language Processing (NLP) applications. FaBERT is openly accessible at https://huggingface.co/sbunlp/fabert