Abstract:Joint compression of point cloud geometry and attributes is essential for efficient 3D data representation. Existing methods often rely on post-hoc recoloring procedures and manually tuned bitrate allocation between geometry and attribute bitstreams in inference, which hinders end-to-end optimization and increases system complexity. To overcome these limitations, we propose MEGA-PCC, a fully end-to-end, learning-based framework featuring two specialized models for joint compression. The main compression model employs a shared encoder that encodes both geometry and attribute information into a unified latent representation, followed by dual decoders that sequentially reconstruct geometry and then attributes. Complementing this, the Mamba-based Entropy Model (MEM) enhances entropy coding by capturing spatial and channel-wise correlations to improve probability estimation. Both models are built on the Mamba architecture to effectively model long-range dependencies and rich contextual features. By eliminating the need for recoloring and heuristic bitrate tuning, MEGA-PCC enables data-driven bitrate allocation during training and simplifies the overall pipeline. Extensive experiments demonstrate that MEGA-PCC achieves superior rate-distortion performance and runtime efficiency compared to both traditional and learning-based baselines, offering a powerful solution for AI-driven point cloud compression.
Abstract:To encode point clouds containing both geometry and attributes, most learning-based compression schemes treat geometry and attribute coding separately, employing distinct encoders and decoders. This not only increases computational complexity but also fails to fully exploit shared features between geometry and attributes. To address this limitation, we propose SEDD-PCC, an end-to-end learning-based framework for lossy point cloud compression that jointly compresses geometry and attributes. SEDD-PCC employs a single encoder to extract shared geometric and attribute features into a unified latent space, followed by dual specialized decoders that sequentially reconstruct geometry and attributes. Additionally, we incorporate knowledge distillation to enhance feature representation learning from a teacher model, further improving coding efficiency. With its simple yet effective design, SEDD-PCC provides an efficient and practical solution for point cloud compression. Comparative evaluations against both rule-based and learning-based methods demonstrate its competitive performance, highlighting SEDD-PCC as a promising AI-driven compression approach.