Abstract:The misuse of Large Language Models (LLMs) to infer emotions from text for malicious purposes, known as emotion inference attacks, poses a significant threat to user privacy. In this paper, we investigate the potential of Apple Intelligence's writing tools, integrated across iPhone, iPad, and MacBook, to mitigate these risks through text modifications such as rewriting and tone adjustment. By developing early novel datasets specifically for this purpose, we empirically assess how different text modifications influence LLM-based detection. This capability suggests strong potential for Apple Intelligence's writing tools as privacy-preserving mechanisms. Our findings lay the groundwork for future adaptive rewriting systems capable of dynamically neutralizing sensitive emotional content to enhance user privacy. To the best of our knowledge, this research provides the first empirical analysis of Apple Intelligence's text-modification tools within a privacy-preservation context with the broader goal of developing on-device, user-centric privacy-preserving mechanisms to protect against LLMs-based advanced inference attacks on deployed systems.
Abstract:The rapid proliferation of speech-enabled technologies, including virtual assistants, video conferencing platforms, and wearable devices, has raised significant privacy concerns, particularly regarding the inference of sensitive emotional information from audio data. Existing privacy-preserving methods often compromise usability and security, limiting their adoption in practical scenarios. This paper introduces a novel, user-centric approach that leverages familiar audio editing techniques, specifically pitch and tempo manipulation, to protect emotional privacy without sacrificing usability. By analyzing popular audio editing applications on Android and iOS platforms, we identified these features as both widely available and usable. We rigorously evaluated their effectiveness against a threat model, considering adversarial attacks from diverse sources, including Deep Neural Networks (DNNs), Large Language Models (LLMs), and and reversibility testing. Our experiments, conducted on three distinct datasets, demonstrate that pitch and tempo manipulation effectively obfuscates emotional data. Additionally, we explore the design principles for lightweight, on-device implementation to ensure broad applicability across various devices and platforms.