Abstract:Large Language Models have emerged as transformative tools for Security Operations Centers, enabling automated log analysis, phishing triage, and malware explanation; however, deployment in adversarial cybersecurity environments exposes critical vulnerabilities to prompt injection attacks where malicious instructions embedded in security artifacts manipulate model behavior. This paper introduces SecureCAI, a novel defense framework extending Constitutional AI principles with security-aware guardrails, adaptive constitution evolution, and Direct Preference Optimization for unlearning unsafe response patterns, addressing the unique challenges of high-stakes security contexts where traditional safety mechanisms prove insufficient against sophisticated adversarial manipulation. Experimental evaluation demonstrates that SecureCAI reduces attack success rates by 94.7% compared to baseline models while maintaining 95.1% accuracy on benign security analysis tasks, with the framework incorporating continuous red-teaming feedback loops enabling dynamic adaptation to emerging attack strategies and achieving constitution adherence scores exceeding 0.92 under sustained adversarial pressure, thereby establishing a foundation for trustworthy integration of language model capabilities into operational cybersecurity workflows and addressing a critical gap in current approaches to AI safety within adversarial domains.
Abstract:When researchers deploy large language models for autonomous tasks like reviewing literature or generating hypotheses, the computational bills add up quickly. A single research session using a 70-billion parameter model can cost around $127 in cloud fees, putting these tools out of reach for many academic labs. We developed AgentCompress to tackle this problem head-on. The core idea came from a simple observation during our own work: writing a novel hypothesis clearly demands more from the model than reformatting a bibliography. Why should both tasks run at full precision? Our system uses a small neural network to gauge how hard each incoming task will be, based only on its opening words, then routes it to a suitably compressed model variant. The decision happens in under a millisecond. Testing across 500 research workflows in four scientific fields, we cut compute costs by 68.3% while keeping 96.2% of the original success rate. For labs watching their budgets, this could mean the difference between running experiments and sitting on the sidelines
Abstract:Farmers in remote areas need quick and reliable methods for identifying plant diseases, yet they often lack access to laboratories or high-performance computing resources. Deep learning models can detect diseases from leaf images with high accuracy, but these models are typically too large and computationally expensive to run on low-cost edge devices such as Raspberry Pi. Furthermore, collecting thousands of labeled disease images for training is both expensive and time-consuming. This paper addresses both challenges by combining neural network pruning -- removing unnecessary parts of the model -- with few-shot learning, which enables the model to learn from limited examples. This paper proposes Disease-Aware Channel Importance Scoring (DACIS), a method that identifies which parts of the neural network are most important for distinguishing between different plant diseases, integrated into a three-stage Prune-then-Meta-Learn-then-Prune (PMP) pipeline. Experiments on PlantVillage and PlantDoc datasets demonstrate that the proposed approach reduces model size by 78\% while maintaining 92.3\% of the original accuracy, with the compressed model running at 7 frames per second on a Raspberry Pi 4, making real-time field diagnosis practical for smallholder farmers.