Abstract:MITRE ATT&CK is a cybersecurity knowledge base that organizes threat actor and cyber-attack information into a set of tactics describing the reasons and goals threat actors have for carrying out attacks, with each tactic having a set of techniques that describe the potential methods used in these attacks. One major application of ATT&CK is the use of its tactic and technique hierarchy by security specialists as a framework for annotating cyber-threat intelligence reports, vulnerability descriptions, threat scenarios, inter alia, to facilitate downstream analyses. To date, the tagging process is still largely done manually. In this technical note, we provide a stratified "task space" characterization of the MITRE ATT&CK text tagging task for organizing previous efforts toward automation using AIML methods, while also clarifying pathways for constructing new methods. To illustrate one of the pathways, we use the task space strata to stage-wise construct our own multi-label hierarchical classification models for the text tagging task via experimentation over general cyber-threat intelligence text -- using shareable computational tools and publicly releasing the models to the security community (via https://github.com/jpmorganchase/MITRE_models). Our multi-label hierarchical approach yields accuracy scores of roughly 94% at the tactic level, as well as accuracy scores of roughly 82% at the technique level. The models also meet or surpass state-of-the-art performance while relying only on classical machine learning methods -- removing any dependence on LLMs, RAG, agents, or more complex hierarchical approaches. Moreover, we show that GPT-4o model performance at the tactic level is significantly lower (roughly 60% accuracy) than our own approach. We also extend our baseline model to a corpus of threat scenarios for financial applications produced by subject matter experts.
Abstract:We present Auspex - a threat modeling system built using a specialized collection of generative artificial intelligence-based methods that capture threat modeling tradecraft. This new approach, called tradecraft prompting, centers on encoding the on-the-ground knowledge of threat modelers within the prompts that drive a generative AI-based threat modeling system. Auspex employs tradecraft prompts in two processing stages. The first stage centers on ingesting and processing system architecture information using prompts that encode threat modeling tradecraft knowledge pertaining to system decomposition and description. The second stage centers on chaining the resulting system analysis through a collection of prompts that encode tradecraft knowledge on threat identification, classification, and mitigation. The two-stage process yields a threat matrix for a system that specifies threat scenarios, threat types, information security categorizations and potential mitigations. Auspex produces formalized threat model output in minutes, relative to the weeks or months a manual process takes. More broadly, the focus on bespoke tradecraft prompting, as opposed to fine-tuning or agent-based add-ons, makes Auspex a lightweight, flexible, modular, and extensible foundational system capable of addressing the complexity, resource, and standardization limitations of both existing manual and automated threat modeling processes. In this connection, we establish the baseline value of Auspex to threat modelers through an evaluation procedure based on feedback collected from cybersecurity subject matter experts measuring the quality and utility of threat models generated by Auspex on real banking systems. We conclude with a discussion of system performance and plans for enhancements to Auspex.