Abstract:Distilling knowledge from large proprietary models (e.g., GPT-4) to tiny deployable models (less than 1B parameters) faces a critical capacity-budget trap: the 1000x capacity gap between teachers and students prevents effective direct transfer, while API costs prohibit extensive data collection. We introduce BRIDGE (Budget-Aware Reasoning via Intermediate Distillation), a two-phase framework that resolves these constraints through strategic intermediation and budget asymmetry. In Phase 1, a mid-sized Teacher Assistant (TA; e.g., about 7B) learns from the black-box teacher on a strictly limited subset of data (e.g., 3-5%), selected via a zero-API-cost pipeline that balances entropic difficulty and semantic diversity using only local TA inference. In Phase 2, we exploit this asymmetry-teacher queries are expensive, whereas TA inference is free to amplify supervision: the refined TA generates synthetic rationales for the full dataset to train the tiny student. Crucially, we apply an instruction-tuning curriculum to establish behavioral alignment in the tiny student before transferring reasoning. Our theoretical analysis shows that BRIDGE yields tighter generalization bounds than direct distillation when data is abundant. Experiments across medical, legal, and financial benchmarks demonstrate consistent improvements: BRIDGE delivers student performance gains of 28-41%, closing the capability gap with proprietary teachers by 12-16% while using 10x fewer teacher queries. Notably, BRIDGE defies the conventional cost-performance frontier, surpassing direct distillation baselines that use 100% of the budget while consuming only 5% of the resources.
Abstract:With the rapid development of natural language processing, many language models have been invented for multiple tasks. One important task is information retrieval (IR), which requires models to retrieve relevant documents. Despite its importance in many real-life applications, especially in retrieval augmented generation (RAG) systems, this task lacks Vietnamese benchmarks. This situation causes difficulty in assessing and comparing many existing Vietnamese embedding language models on the task and slows down the advancement of Vietnamese natural language processing (NLP) research. In this work, we aim to provide the Vietnamese research community with a new benchmark for information retrieval, which mainly focuses on retrieval and reranking tasks. Furthermore, we also present a new objective function based on the InfoNCE loss function, which is used to train our Vietnamese embedding model. Our function aims to be better than the origin in information retrieval tasks. Finally, we analyze the effect of temperature, a hyper-parameter in both objective functions, on the performance of text embedding models.