Abstract:As the deployment of large language models (LLMs) grows in sensitive domains, ensuring the integrity of their computational provenance becomes a critical challenge, particularly in regulated sectors such as healthcare, where strict requirements are applied in dataset usage. We introduce ZKPROV, a novel cryptographic framework that enables zero-knowledge proofs of LLM provenance. It allows users to verify that a model is trained on a reliable dataset without revealing sensitive information about it or its parameters. Unlike prior approaches that focus on complete verification of the training process (incurring significant computational cost) or depend on trusted execution environments, ZKPROV offers a distinct balance. Our method cryptographically binds a trained model to its authorized training dataset(s) through zero-knowledge proofs while avoiding proof of every training step. By leveraging dataset-signed metadata and compact model parameter commitments, ZKPROV provides sound and privacy-preserving assurances that the result of the LLM is derived from a model trained on the claimed authorized and relevant dataset. Experimental results demonstrate the efficiency and scalability of the ZKPROV in generating this proof and verifying it, achieving a practical solution for real-world deployments. We also provide formal security guarantees, proving that our approach preserves dataset confidentiality while ensuring trustworthy dataset provenance.
Abstract:Data-driven agriculture, which integrates technology and data into agricultural practices, has the potential to improve crop yield, disease resilience, and long-term soil health. However, privacy concerns, such as adverse pricing, discrimination, and resource manipulation, deter farmers from sharing data, as it can be used against them. To address this barrier, we propose a privacy-preserving framework that enables secure data sharing and collaboration for research and development while mitigating privacy risks. The framework combines dimensionality reduction techniques (like Principal Component Analysis (PCA)) and differential privacy by introducing Laplacian noise to protect sensitive information. The proposed framework allows researchers to identify potential collaborators for a target farmer and train personalized machine learning models either on the data of identified collaborators via federated learning or directly on the aggregated privacy-protected data. It also allows farmers to identify potential collaborators based on similarities. We have validated this on real-life datasets, demonstrating robust privacy protection against adversarial attacks and utility performance comparable to a centralized system. We demonstrate how this framework can facilitate collaboration among farmers and help researchers pursue broader research objectives. The adoption of the framework can empower researchers and policymakers to leverage agricultural data responsibly, paving the way for transformative advances in data-driven agriculture. By addressing critical privacy challenges, this work supports secure data integration, fostering innovation and sustainability in agricultural systems.