Abstract:Compositional generalization is a key facet of human cognition, but lacking in current AI tools such as vision-language models. Previous work examined whether a compositional tensor-based sentence semantics can overcome the challenge, but led to negative results. We conjecture that the increased training efficiency of quantum models will improve performance in these tasks. We interpret the representations of compositional tensor-based models in Hilbert spaces and train Variational Quantum Circuits to learn these representations on an image captioning task requiring compositional generalization. We used two image encoding techniques: a multi-hot encoding (MHE) on binary image vectors and an angle/amplitude encoding on image vectors taken from the vision-language model CLIP. We achieve good proof-of-concept results using noisy MHE encodings. Performance on CLIP image vectors was more mixed, but still outperformed classical compositional models.
Abstract:In this paper, we develop a compositional vector-based semantics of positive transitive sentences in quantum natural language processing for a non-English language, i.e. Persian, to compare the parametrized quantum circuits of two synonymous sentences in two languages, English and Persian. By considering grammar+meaning of a transitive sentence, we translate DisCoCat diagram via ZX-calculus into quantum circuit form. Also, we use a bigraph method to rewrite DisCoCat diagram and turn into quantum circuit in the semantic side.