Abstract:In this paper, we develop a wavelet-based theoretical framework for analyzing the universal approximation capabilities of neural networks over a wide range of activation functions. Leveraging wavelet frame theory on the spaces of homogeneous type, we derive sufficient conditions on activation functions to ensure that the associated neural network approximates any functions in the given space, along with an error estimate. These sufficient conditions accommodate a variety of smooth activation functions, including those that exhibit oscillatory behavior. Furthermore, by considering the $L^2$-distance between smooth and non-smooth activation functions, we establish a generalized approximation result that is applicable to non-smooth activations, with the error explicitly controlled by this distance. This provides increased flexibility in the design of network architectures.
Abstract:We focus on designing and solving the neutral inclusion problem via neural networks. The neutral inclusion problem has a long history in the theory of composite materials, and it is exceedingly challenging to identify the precise condition that precipitates a general-shaped inclusion into a neutral inclusion. Physics-informed neural networks (PINNs) have recently become a highly successful approach to addressing both forward and inverse problems associated with partial differential equations. We found that traditional PINNs perform inadequately when applied to the inverse problem of designing neutral inclusions with arbitrary shapes. In this study, we introduce a novel approach, Conformal mapping Coordinates Physics-Informed Neural Networks (CoCo-PINNs), which integrates complex analysis techniques into PINNs. This method exhibits strong performance in solving forward-inverse problems to construct neutral inclusions of arbitrary shapes in two dimensions, where the imperfect interface condition on the inclusion's boundary is modeled by training neural networks. Notably, we mathematically prove that training with a single linear field is sufficient to achieve neutrality for untrained linear fields in arbitrary directions, given a minor assumption. We demonstrate that CoCo-PINNs offer enhanced performances in terms of credibility, consistency, and stability.