Abstract:Recent advancements in Large Language Models (LLMs) have transformed code generation from natural language queries. However, despite their extensive knowledge and ability to produce high-quality code, LLMs often struggle with contextual accuracy, particularly in evolving codebases. Current code search and retrieval methods frequently lack robustness in both the quality and contextual relevance of retrieved results, leading to suboptimal code generation. This paper introduces a novel knowledge graph-based approach to improve code search and retrieval leading to better quality of code generation in the context of repository-level tasks. The proposed approach represents code repositories as graphs, capturing structural and relational information for enhanced context-aware code generation. Our framework employs a hybrid approach for code retrieval to improve contextual relevance, track inter-file modular dependencies, generate more robust code and ensure consistency with the existing codebase. We benchmark the proposed approach on the Evolutionary Code Benchmark (EvoCodeBench) dataset, a repository-level code generation benchmark, and demonstrate that our method significantly outperforms the baseline approach. These findings suggest that knowledge graph based code generation could advance robust, context-sensitive coding assistance tools.
Abstract:Recent advances in the healthcare industry have led to an abundance of unstructured data, making it challenging to perform tasks such as efficient and accurate information retrieval at scale. Our work offers an all-in-one scalable solution for extracting and exploring complex information from large-scale research documents, which would otherwise be tedious. First, we briefly explain our knowledge synthesis process to extract helpful information from unstructured text data of research documents. Then, on top of the knowledge extracted from the documents, we perform complex information retrieval using three major components- Paragraph Retrieval, Triplet Retrieval from Knowledge Graphs, and Complex Question Answering (QA). These components combine lexical and semantic-based methods to retrieve paragraphs and triplets and perform faceted refinement for filtering these search results. The complexity of biomedical queries and documents necessitates using a QA system capable of handling queries more complex than factoid queries, which we evaluate qualitatively on the COVID-19 Open Research Dataset (CORD-19) to demonstrate the effectiveness and value-add.