Abstract:Foundational machine learning interatomic potentials (MLIPs) are being developed at a rapid pace, promising closer and closer approximation to ab initio accuracy. This unlocks the possibility to simulate much larger length and time scales. However, benchmarks for these MLIPs are usually limited to ordered, crystalline and bulk materials. Hence, reported performance does not necessarily accurately reflect MLIP performance in real applications such as heterogeneous catalysis. Here, we systematically analyze zero-shot performance of 80 different MLIPs, evaluating tasks typical for heterogeneous catalysis across a range of different data sets, including adsorption and reaction on surfaces of alloyed metals, oxides, and metal-oxide interfacial systems. We demonstrate that current-generation foundational MLIPs can already perform at high accuracy for applications such as predicting vacancy formation energies of perovskite oxides or zero-point energies of supported nanoclusters. However, limitations also exist. We find that many MLIPs catastrophically fail when applied to magnetic materials, and structure relaxation in the MLIP generally increases the energy prediction error compared to single-point evaluation of a previously optimized structure. Comparing low-cost task-specific models to foundational MLIPs, we highlight some core differences between these model approaches and show that -- if considering only accuracy -- these models can compete with the current generation of best-performing MLIPs. Furthermore, we show that no single MLIP universally performs best, requiring users to investigate MLIP suitability for their desired application.
Abstract:Obtaining accurate transition state (TS) energies is a bottleneck in computational screening of complex materials and reaction networks due to the high cost of TS search methods and first-principles methods such as density functional theory (DFT). Here we propose a machine learning (ML) model for predicting TS energies based on Gaussian process regression with the Wasserstein Weisfeiler-Lehman graph kernel (WWL-GPR). Applying the model to predict adsorption and TS energies for the reverse water-gas shift (RWGS) reaction on single-atom alloy (SAA) catalysts, we show that it can significantly improve the accuracy compared to traditional approaches based on scaling relations or ML models without a graph representation. Further benefitting from the low cost of model training, we train an ensemble of WWL-GPR models to obtain uncertainties through subsampling of the training data and show how these uncertainties propagate to turnover frequency (TOF) predictions through the construction of an ensemble of microkinetic models. Comparing the errors in model-based vs DFT-based TOF predictions, we show that the WWL-GPR model reduces errors by almost an order of magnitude compared to scaling relations. This demonstrates the critical impact of accurate energy predictions on catalytic activity estimation. Finally, we apply our model to screen new materials, identifying promising catalysts for RWGS. This work highlights the power of combining advanced ML techniques with DFT and microkinetic modeling for screening catalysts for complex reactions like RWGS, providing a robust framework for future catalyst design.
Abstract:The conversion of $\mathrm{CO_2}$ into useful products such as methanol is a key strategy for abating climate change and our dependence on fossil fuels. Developing new catalysts for this process is costly and time-consuming and can thus benefit from computational exploration of possible active sites. However, this is complicated by the complexity of the materials and reaction networks. Here, we present a workflow for exploring transition states of elementary reaction steps at inverse catalysts, which is based on the training of a neural network-based machine learning interatomic potential. We focus on the crucial formate intermediate and its formation over nanoclusters of indium oxide supported on Cu(111). The speedup compared to an approach purely based on density functional theory allows us to probe a wide variety of active sites found at nanoclusters of different sizes and stoichiometries. Analysis of the obtained set of transition state geometries reveals different structure--activity trends at the edge or interior of the nanoclusters. Furthermore, the identified geometries allow for the breaking of linear scaling relations, which could be a key underlying reason for the excellent catalytic performance of inverse catalysts observed in experiments.




Abstract:Efficiently identifying sleep stages is crucial for unraveling the intricacies of sleep in both preclinical and clinical research. The labor-intensive nature of manual sleep scoring, demanding substantial expertise, has prompted a surge of interest in automated alternatives. Sleep studies in mice play a significant role in understanding sleep patterns and disorders and underscore the need for robust scoring methodologies. In response, this study introduces LG-Sleep, a novel subject-independent deep neural network architecture designed for mice sleep scoring through electroencephalogram (EEG) signals. LG-Sleep extracts local and global temporal transitions within EEG signals to categorize sleep data into three stages: wake, rapid eye movement (REM) sleep, and non-rapid eye movement (NREM) sleep. The model leverages local and global temporal information by employing time-distributed convolutional neural networks to discern local temporal transitions in EEG data. Subsequently, features derived from the convolutional filters traverse long short-term memory blocks, capturing global transitions over extended periods. Crucially, the model is optimized in an autoencoder-decoder fashion, facilitating generalization across distinct subjects and adapting to limited training samples. Experimental findings demonstrate superior performance of LG-Sleep compared to conventional deep neural networks. Moreover, the model exhibits good performance across different sleep stages even when tasked with scoring based on limited training samples.