Abstract:With the rapid adoption of multimodal large language models (MLLMs) across diverse applications, there is a pressing need for task-centered, high-quality training data. A key limitation of current training datasets is their reliance on sparse annotations mined from the Internet or entered via manual typing that capture only a fraction of an image's visual content. Dense annotations are more valuable but remain scarce. Traditional text-based annotation pipelines are poorly suited for creating dense annotations: typing limits expressiveness, slows annotation speed, and underrepresents nuanced visual features, especially in specialized areas such as multicultural imagery and 3D asset annotation. In this paper, we present DenseAnnotate, an audio-driven online annotation platform that enables efficient creation of dense, fine-grained annotations for images and 3D assets. Annotators narrate observations aloud while synchronously linking spoken phrases to image regions or 3D scene parts. Our platform incorporates speech-to-text transcription and region-of-attention marking. To demonstrate the effectiveness of DenseAnnotate, we conducted case studies involving over 1,000 annotators across two domains: culturally diverse images and 3D scenes. We curate a human-annotated multi-modal dataset of 3,531 images, 898 3D scenes, and 7,460 3D objects, with audio-aligned dense annotations in 20 languages, including 8,746 image captions, 2,000 scene captions, and 19,000 object captions. Models trained on this dataset exhibit improvements of 5% in multilingual, 47% in cultural alignment, and 54% in 3D spatial capabilities. Our results show that our platform offers a feasible approach for future vision-language research and can be applied to various tasks and diverse types of data.

Abstract:This report provides a detailed comparison between the measures proposed in the EU AI Act's General-Purpose AI (GPAI) Code of Practice (Third Draft) and current practices adopted by leading AI companies. As the EU moves toward enforcing binding obligations for GPAI model providers, the Code of Practice will be key to bridging legal requirements with concrete technical commitments. Our analysis focuses on the draft's Safety and Security section which is only relevant for the providers of the most advanced models (Commitments II.1-II.16) and excerpts from current public-facing documents quotes that are relevant to each individual measure. We systematically reviewed different document types - including companies' frontier safety frameworks and model cards - from over a dozen companies, including OpenAI, Anthropic, Google DeepMind, Microsoft, Meta, Amazon, and others. This report is not meant to be an indication of legal compliance nor does it take any prescriptive viewpoint about the Code of Practice or companies' policies. Instead, it aims to inform the ongoing dialogue between regulators and GPAI model providers by surfacing evidence of precedent.




Abstract:As large language models (LLMs) become more capable and agentic, the requirement for trust in their outputs grows significantly, yet at the same time concerns have been mounting that models may learn to lie in pursuit of their goals. To address these concerns, a body of work has emerged around the notion of "honesty" in LLMs, along with interventions aimed at mitigating deceptive behaviors. However, evaluations of honesty are currently highly limited, with no benchmark combining large scale and applicability to all models. Moreover, many benchmarks claiming to measure honesty in fact simply measure accuracy--the correctness of a model's beliefs--in disguise. In this work, we introduce a large-scale human-collected dataset for measuring honesty directly, allowing us to disentangle accuracy from honesty for the first time. Across a diverse set of LLMs, we find that while larger models obtain higher accuracy on our benchmark, they do not become more honest. Surprisingly, while most frontier LLMs obtain high scores on truthfulness benchmarks, we find a substantial propensity in frontier LLMs to lie when pressured to do so, resulting in low honesty scores on our benchmark. We find that simple methods, such as representation engineering interventions, can improve honesty. These results underscore the growing need for robust evaluations and effective interventions to ensure LLMs remain trustworthy.