Abstract:Suffix prediction of business processes forecasts the remaining sequence of events until process completion. Current approaches focus on predicting a single, most likely suffix. However, if the future course of a process is exposed to uncertainty or has high variability, the expressiveness of a single suffix prediction can be limited. To address this limitation, we propose probabilistic suffix prediction, a novel approach that approximates a probability distribution of suffixes. The proposed approach is based on an Uncertainty-Aware Encoder-Decoder LSTM (U-ED-LSTM) and a Monte Carlo (MC) suffix sampling algorithm. We capture epistemic uncertainties via MC dropout and aleatoric uncertainties as learned loss attenuation. This technical report provides a detailed evaluation of the U-ED-LSTM's predictive performance and assesses its calibration on four real-life event logs with three different hyperparameter settings. The results show that i) the U-ED-LSTM has reasonable predictive performance across various datasets, ii) aggregating probabilistic suffix predictions into mean values can outperform most likely predictions, particularly for rare prefixes or longer suffixes, and iii) the approach effectively captures uncertainties present in event logs.