Abstract:Tissue dynamics play a crucial role in biological processes ranging from wound healing to morphogenesis. However, these noisy multicellular dynamics are notoriously hard to predict. Here, we introduce a biomimetic machine learning framework capable of inferring noisy multicellular dynamics directly from experimental movies. This generative model combines graph neural networks, normalizing flows and WaveNet algorithms to represent tissues as neural stochastic differential equations where cells are edges of an evolving graph. This machine learning architecture reflects the architecture of the underlying biological tissues, substantially reducing the amount of data needed to train it compared to convolutional or fully-connected neural networks. Taking epithelial tissue experiments as a case study, we show that our model not only captures stochastic cell motion but also predicts the evolution of cell states in their division cycle. Finally, we demonstrate that our method can accurately generate the experimental dynamics of developmental systems, such as the fly wing, and cell signaling processes mediated by stochastic ERK waves, paving the way for its use as a digital twin in bioengineering and clinical contexts.
Abstract:Model reduction is the construction of simple yet predictive descriptions of the dynamics of many-body systems in terms of a few relevant variables. A prerequisite to model reduction is the identification of these relevant variables, a task for which no general method exists. Here, we develop a systematic approach based on the information bottleneck to identify the relevant variables, defined as those most predictive of the future. We elucidate analytically the relation between these relevant variables and the eigenfunctions of the transfer operator describing the dynamics. Further, we show that in the limit of high compression, the relevant variables are directly determined by the slowest-decaying eigenfunctions. Our information-based approach indicates when to optimally stop increasing the complexity of the reduced model. Further, it provides a firm foundation to construct interpretable deep learning tools that perform model reduction. We illustrate how these tools work on benchmark dynamical systems and deploy them on uncurated datasets, such as satellite movies of atmospheric flows downloaded directly from YouTube.