Abstract:In this paper, we study the exact learning problem for weighted graphs, where we are given the vertex set, $V$, of a weighted graph, $G=(V,E,w)$, but we are not given $E$. The problem, which is also known as graph reconstruction, is to determine all the edges of $E$, including their weights, by asking queries about $G$ from an oracle. As we observe, using simple shortest-path length queries is not sufficient, in general, to learn a weighted graph. So we study a number of scenarios where it is possible to learn $G$ using a subquadratic number of composite queries, which combine two or three simple queries.




Abstract:Graph neural networks have been successful for machine learning, as well as for combinatorial and graph problems such as the Subgraph Isomorphism Problem and the Traveling Salesman Problem. We describe an approach for computing graph sparsifiers by combining a graph neural network and Monte Carlo Tree Search. We first train a graph neural network that takes as input a partial solution and proposes a new node to be added as output. This neural network is then used in a Monte Carlo search to compute a sparsifier. The proposed method consistently outperforms several standard approximation algorithms on different types of graphs and often finds the optimal solution.