Abstract:High-fidelity wildfire monitoring using Unmanned Aerial Vehicles (UAVs) typically requires multimodal sensing - especially RGB and thermal imagery - which increases hardware cost and power consumption. This paper introduces SAM-TIFF, a novel teacher-student distillation framework for pixel-level wildfire temperature prediction and segmentation using RGB input only. A multimodal teacher network trained on paired RGB-Thermal imagery and radiometric TIFF ground truth distills knowledge to a unimodal RGB student network, enabling thermal-sensor-free inference. Segmentation supervision is generated using a hybrid approach of segment anything (SAM)-guided mask generation, and selection via TOPSIS, along with Canny edge detection and Otsu's thresholding pipeline for automatic point prompt selection. Our method is the first to perform per-pixel temperature regression from RGB UAV data, demonstrating strong generalization on the recent FLAME 3 dataset. This work lays the foundation for lightweight, cost-effective UAV-based wildfire monitoring systems without thermal sensors.
Abstract:The increasing accessibility of radiometric thermal imaging sensors for unmanned aerial vehicles (UAVs) offers significant potential for advancing AI-driven aerial wildfire management. Radiometric imaging provides per-pixel temperature estimates, a valuable improvement over non-radiometric data that requires irradiance measurements to be converted into visible images using RGB color palettes. Despite its benefits, this technology has been underutilized largely due to a lack of available data for researchers. This study addresses this gap by introducing methods for collecting and processing synchronized visual spectrum and radiometric thermal imagery using UAVs at prescribed fires. The included imagery processing pipeline drastically simplifies and partially automates each step from data collection to neural network input. Further, we present the FLAME 3 dataset, the first comprehensive collection of side-by-side visual spectrum and radiometric thermal imagery of wildland fires. Building on our previous FLAME 1 and FLAME 2 datasets, FLAME 3 includes radiometric thermal Tag Image File Format (TIFFs) and nadir thermal plots, providing a new data type and collection method. This dataset aims to spur a new generation of machine learning models utilizing radiometric thermal imagery, potentially trivializing tasks such as aerial wildfire detection, segmentation, and assessment. A single-burn subset of FLAME 3 for computer vision applications is available on Kaggle with the full 6 burn set available to readers upon request.